Contrast-enhanced photon-counting detector CT for discriminating local recurrence from postoperative changes after resection of pancreatic ductal adenocarcinoma.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zlatan Alagic, Carlos Valls Duran, Anders Svensson-Marcial, Seppo K Koskinen
{"title":"Contrast-enhanced photon-counting detector CT for discriminating local recurrence from postoperative changes after resection of pancreatic ductal adenocarcinoma.","authors":"Zlatan Alagic, Carlos Valls Duran, Anders Svensson-Marcial, Seppo K Koskinen","doi":"10.1186/s41747-025-00567-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We evaluated the diagnostic capability of photon-counting detector computed tomography (PCD-CT) spectral variables in late arterial phase (LAP) and portal venous phase (PVP) to discriminate between local tumor recurrence (LTR) and postoperative changes (POC) after pancreatic ductal adenocarcinoma (PDAC) resection.</p><p><strong>Methods: </strong>Seventy-three consecutive PCD-CT scans in 73 patients with postoperative soft-tissue lesions (PSLs) were included, 42 with POC and 31 with LTR. Regions of interest were drawn in each PSL, and spectral variables were calculated: iodine concentration (IC), normalized IC (NIC), fat fraction, attenuation at 40, 70, and 90 keV, and slope of the spectral curve between 40-90 keV. Multivariable binary logistic regression models were constructed. Diagnostic performance was assessed for LAP and PVP using receiver operating characteristic analysis.</p><p><strong>Results: </strong>In LAP, all variables except fat fraction showed significant differences between LTR and POC (p ≤ 0.025). In PVP, all variables except NIC and fat fraction demonstrated significant differences between LTR and POC (p ≤ 0.005). Logistic regression analysis included NIC and 70 keV in the LAP-based model and IC and 90 keV in the PVP-based model. Both models achieved a higher area under the curve (AUC) than individual spectral variables in each phase. The LAP-based model achieved an AUC of 0.919 with 94% sensitivity, 84% specificity, and 87% accuracy, while the PVP-based model reached 0.820, 71%, 88%, and 81%, respectively.</p><p><strong>Conclusion: </strong>Spectral variables from PCD-CT help distinguish between LTR and POC in LAP and PVP post-PDAC resection. Multivariable logistic regression improves diagnostic performance, especially in LAP.</p><p><strong>Relevance statement: </strong>Measuring normalized iodine concentration and attenuation at 70 keV in late arterial phase, or iodine concentration and attenuation at 90 keV in portal venous phase, and incorporating these values into a logistic regression model can help differentiate between local tumor recurrence and postoperative changes after pancreatic ductal adenocarcinoma resection.</p><p><strong>Key points: </strong>Distinguishing recurrence from postoperative changes on CT after pancreatic ductal adenocarcinoma resection is challenging. PCD-CT spectral variable values differed significantly between local tumor recurrence (LTR) and postoperative changes (POC). Logistic regression of spectral variables can help distinguish LTR from POC. The late arterial phase-based model reached an AUC of 0.919 with 94% sensitivity and 84% specificity.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"26"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00567-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We evaluated the diagnostic capability of photon-counting detector computed tomography (PCD-CT) spectral variables in late arterial phase (LAP) and portal venous phase (PVP) to discriminate between local tumor recurrence (LTR) and postoperative changes (POC) after pancreatic ductal adenocarcinoma (PDAC) resection.

Methods: Seventy-three consecutive PCD-CT scans in 73 patients with postoperative soft-tissue lesions (PSLs) were included, 42 with POC and 31 with LTR. Regions of interest were drawn in each PSL, and spectral variables were calculated: iodine concentration (IC), normalized IC (NIC), fat fraction, attenuation at 40, 70, and 90 keV, and slope of the spectral curve between 40-90 keV. Multivariable binary logistic regression models were constructed. Diagnostic performance was assessed for LAP and PVP using receiver operating characteristic analysis.

Results: In LAP, all variables except fat fraction showed significant differences between LTR and POC (p ≤ 0.025). In PVP, all variables except NIC and fat fraction demonstrated significant differences between LTR and POC (p ≤ 0.005). Logistic regression analysis included NIC and 70 keV in the LAP-based model and IC and 90 keV in the PVP-based model. Both models achieved a higher area under the curve (AUC) than individual spectral variables in each phase. The LAP-based model achieved an AUC of 0.919 with 94% sensitivity, 84% specificity, and 87% accuracy, while the PVP-based model reached 0.820, 71%, 88%, and 81%, respectively.

Conclusion: Spectral variables from PCD-CT help distinguish between LTR and POC in LAP and PVP post-PDAC resection. Multivariable logistic regression improves diagnostic performance, especially in LAP.

Relevance statement: Measuring normalized iodine concentration and attenuation at 70 keV in late arterial phase, or iodine concentration and attenuation at 90 keV in portal venous phase, and incorporating these values into a logistic regression model can help differentiate between local tumor recurrence and postoperative changes after pancreatic ductal adenocarcinoma resection.

Key points: Distinguishing recurrence from postoperative changes on CT after pancreatic ductal adenocarcinoma resection is challenging. PCD-CT spectral variable values differed significantly between local tumor recurrence (LTR) and postoperative changes (POC). Logistic regression of spectral variables can help distinguish LTR from POC. The late arterial phase-based model reached an AUC of 0.919 with 94% sensitivity and 84% specificity.

对比增强光子计数探测器 CT 用于鉴别胰腺导管腺癌切除术后的局部复发和术后变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信