Masitoh Mangsur, A. H. Abdullah, Rahmat Firman Septiyanto, Yus Rama Denny Muchtar, I. Affifah
{"title":"THE INFLUENCE OF COMPOSITION OF CNT (CARBON NANOTUBE) ON THE PHYSICAL PROPERTIES OF BIOPLASTIC MADE FROM CASSAVA STARCH","authors":"Masitoh Mangsur, A. H. Abdullah, Rahmat Firman Septiyanto, Yus Rama Denny Muchtar, I. Affifah","doi":"10.17146/jsmi.2019.20.4.5514","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.4.5514","url":null,"abstract":"Bioplastics are starch-based polymers that are easily degraded by microorganisms, so they can be used as an alternative to the use of conventional plastics. In this research, bioplastics made from cassava starch was made using glycerol as plasticizer and used MWCNTs (Multi-Wall CNTs) type CNT as reinforcement with variations in the composition of 0%, 1%, 2%, and 3%. Bioplastics are made with a dry method (dry blending) with stages of pre-mixing, mixing, hot press and cold press. Characteristics of bioplastic starch/CNT include tensile strength, biodegradation and morphological. The test results show that the addition of CNT composition affects the mechanical properties of bioplastics. The optimum value of tensile strength occurred in the addition of 2% CNT at 13.52 MPa. Biodegradable test results using the Aspergillus niger mushroom prove that bioplastic starch/CNT can be degraded well. The results of morphological characteristics in the form of SEM results showed that 3% bioplastic starch / CNT had cracks and resulted in decreased tensile strength. FTIR test results indicate the presence of a new functional group C≡C because of the addition of CNT.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115026405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Saraswati, Oktaviana Dewi Indah Prasiwi, A. Masykur, M. Anwar
{"title":"SYNTHESIS OF MAGNETIC COMPOSITE OF IRON COMPOUNDS/CARBON NANOTUBES IN CHEMICAL VAPOR DEPOSITION","authors":"T. Saraswati, Oktaviana Dewi Indah Prasiwi, A. Masykur, M. Anwar","doi":"10.17146/jsmi.2019.20.3.5409","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.3.5409","url":null,"abstract":"The chemical vapor deposition (CVD) synthesis of magnetic carbon nanotubes (mCNT) using carbon dioxide/carbon catalyst has been successfully carried out in various pressures. The temperatures were set at 800° C for 10 minutes reaction time. Nitrogen (N2) gas in 20 Torr was flown in followed by ethanol vapor until the final pressure reached 80 and 100 Torr without added air, and 180 Torr with added air. The formation of mCNT was confirmed by shifted X-ray diffraction (XRD) peak of graphite from 26.53° to 25.53° which were highly considered to the other carbon allotropes with sp2 hybridized carbon atom hybridization structures. The higher pressure with added atmospheric air led to the excessive oxidation which influenced the growth of mCNT. Transmission electron microscopy (TEM) analysis observed mCNT filled by catalyst particles which suggested as magnetic phase induced the magnetic property of mCNT. The best electrical conductivity performance (lower electrical resistance) was owned by mCNT produced in the lower pressure condition with no air added.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"344 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120892232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SYNTHESIS AND CHARACTERIZATION OF GRAPHENE FROM COCONUT FIBER (COCOS NUCIFERA) AS ANODE MATERIALS FOR LI-ION BATTERY","authors":"I. Gunawan, H Wagiyo, B. Sugeng, S. Sudaryanto","doi":"10.17146/jsmi.2019.20.3.5475","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.3.5475","url":null,"abstract":"Synthesis of graphene from coconut fiber conducted in two stages. The first stage is heating the powder of coconut fiber that passes 325 meshes by hydrothermal method at 200o C for 4 hours. Furthermore, the pyrolysis then treated at temperature of 1000° C for 2 hours. The grain size and surface morphology from graphene observed using SEM in the 1000X magnification. From the SEM image of graphene, it shows the pattern of several thick layers build mutual three-dimensional, forming a flake structure. Observations also show stacks of graphene structure with more big flakes forming a thick pallet. Another characterization was performed by using X-ray diffractometer (XRD), Raman Spectrometer and LCR meter. From XRD observation there is an amorphous pattern at the first stage of synthesis, after pyrolysis at 1000o C for 2 hour a peak near 2θ = 24o, 42oand 52o which corresponds to crystal indexes (002), (400) and (511) became visible. The peak at around 1350 cm-1 in the Raman is the D band. The D band is represented defects, like disruption in the sp2 bonding because of heptagon and pentagon rings, vacancies, edge effect, and etc. DC conductivity or bulk electrical conductivity of about 4.6 x 10-3 Scm-1.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128785007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FABRICATION AND CHARACTERIZATION OF STARCH BASED BIOPLASTICS WITH PALM OIL ADDITION","authors":"A. K. Fikriyyah, A. H. Abdullah, Rahmad Dewantoro","doi":"10.17146/jsmi.2019.20.3.4846","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.3.4846","url":null,"abstract":"In this work, starch-based bioplastics in advancing its properties were positively arranged with the addition of palm oil. Starch-based bioplastics were produced by dry blending method and compression technique with mixing starch and glycerol (3:1, w/w) then adding palm oil at various concentration (0%, 2.5%, 5% and 7.5% w/w). Morphology of bioplastics presented that palm oil wrapped bioplastics granules which influenced hydrophobicity properties of bioplastics compared by increasing contact angle of bioplastics from 45.95 0 (0% of palm oil) to 61.98 0 (5% of palm oil). This result indicated that the addition of palm oil could develop the properties of bioplastics to hold absorbing water molecules. Moreover, the melting point of bioplastics also affected shifting temperature from 115 0 C to be 100 0 C that could save the energy needed during heating process. FTIR analysis showed that C=O group at wavenumber 1747 cm -1 was dependable the interaction between starch-glycerol and palm oil. Furthermore, the addition of palm oil would accelerate the biodegradation process. Although the mechanical properties of bioplastics have not increased, the addition of palm oil on bioplastics fabrication is an alternative to improve the characteristic of bioplastics, especially physical, thermal, hydrophobicity and biodegradation properties.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116824050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Pratesa, A. Wibisono, W. Putra, Y. Sadeli, A. Zakiyuddin, S. Harjanto
{"title":"EFFECT OF H2O2 AND MnO2 AS OXIDATORS OF GOLD AND COPPER LEACH PROCESSES FROM PRINTED CIRCUIT BOARDS","authors":"Y. Pratesa, A. Wibisono, W. Putra, Y. Sadeli, A. Zakiyuddin, S. Harjanto","doi":"10.17146/jsmi.2019.20.3.4710","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.3.4710","url":null,"abstract":"In general, electronic waste management in the form 2 of printed circuit boards (printed circuit boards/PCBs) is carried out by the process of removing components and taking precious metals that are easily recycled. However, in Indonesia, the recycling process for extracting precious metals has not been much processed, even though they contain precious metals such as copper and gold. This research was conducted to find a more economical and environmentally friendly treatment process by using an oxidizer of Hydrogen Peroxide (H 2 O 2 ) and Manganese Oxide (MnO 2 ) and reducing the level of HCl used. Observation of metal leaching results using Atomic Adsroption Spectroscopy (AAS) showed the value of recovery (recovery) of gold and copper reached 59.1% and 59.8% for 0.5M HCl + 2.5% H 2 O 2 . However, the recovery value of copper has reached its optimum point at the addition of 1.5% H 2 O 2 . The use of 3% & 5% MnO 2 results in recovery values of 12% and 24% for gold and copper. Observation of the cross section shows the dissolution of the copper metal from the PCB and accompanied by a change in the color of the solution from clear to green, the more concentrated the more the amount of dissolved copper metal shows the characteristic of CuCl solution. The results of the comparison of the two types of oxidizers show that H 2 O 2 is better than MnO 2 in producing higher Cu and Au metals more than 3 times.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121702302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TUNABLE SURFACE PLASMON RESONANCES OF Au@TiO2 CORE-SHELL NANOPARTICLES ON THE DSSC (DYE SENSITIZED SOLAR CELLS) PERFORMANCE","authors":"Friska Ayu Fitrianti Sugiono, D. Risanti","doi":"10.17146/jsmi.2019.20.3.5452","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.3.5452","url":null,"abstract":"Plasmonic core-shell nanoparticles, i.e. gold can improve the efficiency of Dye-sensitized Solar Cell by increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance). To achieve maximum enhancement, the morphology of core-shell need to be optimized with coated either by insulator such as semiconductor, i.e. TiO2. In this paper, morphology of Au@TiO2 core-shell precisely control by various TiO2 volume and systematically study its influence on the plasmonic enhancement effect. A gold solution was prepared using Turkevich method. The crystal structure of the powders was determined by powder X-ray diffraction (XRD). The optical properties were measured by UV-Vis absorption spectroscopy using UV-Vis Lambda 750. The photocurrent action spectra or IPCE in visible light spectrum was obtained by adjusting wavelength of incident light, i.e. series connection of halogen lamp and monochromator. UV-Vis absorption spectra of core–shell showed the position of the surface plasmon Au band in the range of 500–550 nm. According to UV-Vis characterization, all samples studied show weak surface plasmon resonance response (~520 to 550 nm) as indicative of the thick TiO2 shells for individual core-shell Au@TiO2.Tunable Surface Plasmon Resonances of Au@TiO2 Core-shell Nanoparticles on the DSSC (Dye Sensitized Solar Cells) Performance","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122076480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MECHANICAL PROPERTIES PREDICTION OF IG-110 GRAPHITE BY NON DESTRUCTIVE INSPECTION USING ULTRASONIC METHOD","authors":"R. Himawan, M. Haryanto, M. Setiawan","doi":"10.17146/jsmi.2019.20.3.5296","DOIUrl":"https://doi.org/10.17146/jsmi.2019.20.3.5296","url":null,"abstract":"The core structure of high temperature gas cooled reactor is the most important part of the reactor which its integrity must be ensured during operation stage. The structure of reactor core must ensure the position of fuel to be kept in its position, to ensure the control rods can get into the guiding canal, and to ensure the flow of the gas coolant. One of the stressor of the graphite material degradation is neutron exposure. The impact of neutron exposure is the change in mechanical properties such as modulus of elasticity. In order to ensure the integrity of the materials, an in-service non-destructive inspection is implemented. The aim of this study is to develop non-destructive inspection method in order to predict mechanical properties of graphite materials. Inspections were done using Ultrasonic Flaw Detector with 35×35×55 [mm] block-shaped specimens made of graphite IG-110. Two types of transducer were used to generate longitudinal and transversal waves with the same frequency of 5 MHz. Two mechanical properties were predicted, that are isotropic characteristic and the modulus of elasticity. The predicted value of the modulus of elasticity was verified by conducting compressive tests using 10×10×10 [mm] cube specimens. According to the ultrasonic propagation velocities resulted from ultrasonic inspection results showed that the graphite IG-110 is an isotropic material. From the calculation of the modulus of elasticity based on measurement results of transversal and longitudinal waves propagation, IG-110 graphite has a value of modulus of elasticity of 9.1 GPa. Compared to the modulus of elasticity measured from compressive test, this value was 10% lower. It can be concluded that the ultrasonic non-destructive inspection can be used to predict mechanical properties of the IG-110 graphite.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122229301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. K. Karo, Irham Abdul Azis, Z. L. Wildan, G. T. Sulungbudi, B. Juliandi, M. Mujamilah
{"title":"RAT BLOOD PROFILE EVALUATION AFTER Fe3O4/CHITOSAN COLLOID INJECTION","authors":"A. K. Karo, Irham Abdul Azis, Z. L. Wildan, G. T. Sulungbudi, B. Juliandi, M. Mujamilah","doi":"10.17146/JSMI.2019.20.3.5479","DOIUrl":"https://doi.org/10.17146/JSMI.2019.20.3.5479","url":null,"abstract":"RAT BLOOD PROFILE EVALUATION AFTER Fe3O4/CHITOSAN COLLOID INJECTION. The application of iron oxide (Fe3O4) magnetic nanoparticles in the biomedical field is still being explored, mainly related to its toxicity and side effects. This article reported results of the study aimed at analyzing the effect of chitosan-coated magnetic nanoparticles (NPM-C) on rat blood profiles. Magnetic colloid as much as 1 ml (concentration of 5 mg NPM-C / mL aquabidest) for 1 kG rat body weight was injected through intra-venous to the treated rat group (4 Wistar rats aged 6 months; weight ± 275 grams; male sex) while another four rats injected with sterile aquabidest used as a control group. The blood taking from each group of rats was carried out on 1 day before injection and several days after injection (days 1, 7, 14, 21, 28) through veins in the tail. To these blood samples, a series of blood profile analyzes is carried out including basic hematology, blood chemistry, and fragility of the erythrocyte membrane. The results of the analysis showed no significant differences between blood profiles after treatment and control, which indicated that chitosan-coated magnetic nanoparticles did not trigger cellular stress responses in the blood. The stability of blood magnetism analyzed by VSM (Vibrating Sample Magnetometer) also shows that magnetic nanoparticles are detected in the blood and tend to decrease in number with increasing time, so it is thought that these nanoparticles can be degraded or have been distributed into organs. These stable properties are analyzed due to an existence of chitosan coating around magnetic nanoparticles. Based on this study it can be concluded that up to the given concentration limit, iron oxide nanoparticles coated by chitosan are not toxic and have the potential to be used as drug carriers, MRI contrast agents, and other biomedical applications.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114795891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Priyono, I. Nuroniah, A. Subhan, E. Sanjaya, B. Prihandoko
{"title":"SYNTHESIS AND CHARACTERIZATION OF Li4Ti5O12 WITH SOL GEL METHOD AS A LITHIUM ION-BATTERY ANODE MATERIAL","authors":"S. Priyono, I. Nuroniah, A. Subhan, E. Sanjaya, B. Prihandoko","doi":"10.17146/JSMI.2019.20.2.5448","DOIUrl":"https://doi.org/10.17146/JSMI.2019.20.2.5448","url":null,"abstract":"SYNTHESIS AND CHARACTERIZATION OF Li4Ti5O12 WITH SOL GEL METHOD AS A LITHIUM ION-BATTERY ANODE MATERIAL. Synthesis of anode Li4Ti5O12 material has been carried out using the sol gel method. The synthesis is carried out with variations in sintering temperatures at 500 oC, 600 oC, 700 oC dan 800 oC. Characterization carried out includes testing thermal analysis to determine the optimum temperature for sintering, XRD (X-ray Diffraction) to find out the phase formation of Li4Ti5O12, Scanning electron microscope (SEM) to analyse the morphology formed, testing Cyclic voltammetry, charge-discharge and Electrochemical Impedance Spectroscopy (EIS) is carried out to find out the elec- trochemical performance. From the results of characterization of thermal and XRD analyses, the optimum temperature for synthesis is 800oC with small impurity content. The results of SEM characterization show that the morphology of the sample is not homogeneous, and the particles are agglomerated. The resulting electrochemical performance increases along with the increase in temperature for sintering, including voltammogram graphs, diffusion coefficient values, electrical conductivity and charge-discharge capacity. Of all the samples, the LTO sintered at 800oC shows good electrochemical performance with a sharp and good voltammogram graph, diffusion coefficient value of lithium ion is 1.58 × 10-9 cm2s-1, electrical conductivity of 0.6282 S/cm and the discharge capacity given is 78,07 mAh/g.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117254890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Arini, L. H. Lalasari, L. Andriyah, G. Fahmi, F. Firdiyono
{"title":"UTILIZATION OF INDONESIAN LOCAL STANNIC CHLORIDE (SnCl4) PRECURSOR IN THE PROCESS OF MAKING FLUORINE- DOPED TIN OXIDE (FTO) CONDUCTIVE GLASS","authors":"T. Arini, L. H. Lalasari, L. Andriyah, G. Fahmi, F. Firdiyono","doi":"10.17146/JSMI.2019.20.2.5469","DOIUrl":"https://doi.org/10.17146/JSMI.2019.20.2.5469","url":null,"abstract":"UTILIZATION OF INDONESIAN LOCAL STANNIC CHLORIDE (SnCl4) PRECURSOR IN THE PROCESS OF MAKING FLUORINE-DOPED TIN OXIDE (FTO) CONDUCTIVE GLASS. Thin layer of fluorine- doped tin oxide (FTO) conductive glass has been deposited on a glass substrate heated at a temperature of 350°C using the ultrasonic spray pyrolysis nebulizer method with variations in fluorine doping and substrate temperatures. This experiment uses the raw material of Indonesian local stannic chloride (SnCl4) (PT Timah Industri) as a precursor with a temperature variation of 250, 300, 350, 400°C. The structure and morphology of the optical and electrical properties of all the thin layers have been examined. XRD results show that all thin layers have a tetragonal crystal structure. In this experiment, there is a significant influence on the role of fluorine doping on resistivity and transmittance values. With the addition of 2% wt doping, the resistivity and transmittance values decrease. The optimum value is obtained by doping 2 wt%, substrate temperature of 350°C with a resistivity value of 9.28.10-5 Ω.cm and transmittance value of 88%.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122253391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}