Fire-Switzerland最新文献

筛选
英文 中文
Numerical Analysis of Restrained Continuous Steel Columns under Standard Fire 标准火灾作用下约束连续钢柱的数值分析
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-24 DOI: 10.3390/fire6090330
J. Sun, Fanqin Meng, K. Andisheh, G. Clifton
{"title":"Numerical Analysis of Restrained Continuous Steel Columns under Standard Fire","authors":"J. Sun, Fanqin Meng, K. Andisheh, G. Clifton","doi":"10.3390/fire6090330","DOIUrl":"https://doi.org/10.3390/fire6090330","url":null,"abstract":"The steel column performance in realistic structures during a fire has yet to be fully understood because existing research emphasizes single-story performance, thereby disregarding the influence of continuous steel columns in multi-story configurations devoid of fire. This paper presents a numerical study to comprehend the overall structural fire performance of continuous steel columns, considering the effect of loading ratios, restraint ratios, column continuity, and single-sided lateral moments. An advanced numerical model was initially developed using ABAQUS and validated against experimental tests. The validated numerical model was subsequently employed to investigate the effects of several parameters, including axial restraint ratios (α = 0.05–0.35) and axial load ratios (n = 0.3–0.8). The study findings indicated that the restraint ratios within the designed range have a slightly beneficial impact on the fire resistance of continuous steel columns. The column continuity did not exert a significant impact on the performance of steel columns in fire. Additionally, the comparison showed that the current design approach in EN 1993-1-2 was conservative for predicting the limiting temperature of internal and edge columns.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43074380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision of Visual Perception of Developing Fires 火灾发展的视觉感知精度
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-23 DOI: 10.3390/fire6090328
Justin W. Bonny, J. Milke
{"title":"Precision of Visual Perception of Developing Fires","authors":"Justin W. Bonny, J. Milke","doi":"10.3390/fire6090328","DOIUrl":"https://doi.org/10.3390/fire6090328","url":null,"abstract":"An aspect of human responses to fires is perceiving changes in intensity. The nature of fires can make this challenging, as flames and smoke are dynamic and change with time. For developing fires, this is in addition to growth occurring vertically and sometimes horizontally, with the footprint of the fire either remaining the same or increasing in size. The present study investigated how precisely humans could visually detect differences in the intensities and growth rates of simulated fires. Using a similar approach to research with non-symbolic visual quantities, a series of experiments compared the precision of judgments regarding which of two simulated fires was greater in intensity or growing faster in intensity when the footprint was fixed or varied. In addition, participants reported what characteristics they used to make their judgments. Precision was significantly worse when comparing the growth rates versus the intensities of fires, and it was better when the fire footprint varied. This provides initial estimates of the precision of mental representations of fire intensity and growth. In addition, participants reported using multiple characteristics, including the size of flames and smoke produced. The present study indicates that humans can precisely detect differences in the intensities of fires using visual cues, but have difficulty when comparing growth rates. We discuss how this suggests that the growth rate may not be a reliable visual cue used by occupants when responding to fires.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42196517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Global Perspective of the Functional Trait Responses of Graminoids to the Seasonality of Fire 禾本科植物对火灾季节性的功能性状响应的全球视角
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-23 DOI: 10.3390/fire6090329
M. Mndela, Humphrey K. Thamaga, B. Gusha
{"title":"A Global Perspective of the Functional Trait Responses of Graminoids to the Seasonality of Fire","authors":"M. Mndela, Humphrey K. Thamaga, B. Gusha","doi":"10.3390/fire6090329","DOIUrl":"https://doi.org/10.3390/fire6090329","url":null,"abstract":"In fire-prone ecosystems, plant resilience to recurrent fires depends on certain fire-adaptive traits. However, how key functional and reproductive traits of graminoids respond to varying burning seasons is poorly understood. This meta-analysis, therefore, unpacks global perspectives on how resprouting, growth, reproductive, and productivity traits of graminoids (grasses and sedges) respond to different burning seasons. We recorded 569 observations from 80 experimental studies comparing graminoid plant trait responses in unburned vs. burned treatments over different seasons of burn. Weighted log response ratios and 95% confidence intervals (95%CI) were analyzed for each plant trait using random effects models and compared across burning seasons. Summer (0.35 (95%CI = 0.25 to 0.46)) and autumn burns (0.24 (95%CI = 0.16 to 0.31)) increased above-ground biomass m−2, while biomass plant−1 was increased only by spring burns (0.27 (95%CI = 0.22 to 0.32)). Bud production plant−1 and tiller−1 were reduced significantly by fire, especially spring, summer, and autumn burns. The shoot height (0.29 (95%CI = 0.17 to 0.41)), leaf length (0.15 (95%CI = 0.11 to 0.20)), and specific leaf area (0.08 (95%CI = 0.06 to 0.09)) increased only under summer burns, while flowering was enhanced by spring (0.19 (95%CI = 0.00 to 0.38)) and autumn burns [0.34 (95%CI = 0.02 to 0.66)]. However, seed production m−2 was reduced by spring and summer burns and the opposite was true for seed production plant−1. Overall, herbaceous plant trait responses to fire varied by the season of burn, disagreeing with the general principle that early spring burning is the best practice. We suggest that a decision on the season of burn should be informed by the objective of burning.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46387777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires V: Comparison between EN 60754-1 and EN 60754-2 高温氯化氢清除降低火灾中PVC电缆烟酸的新视角——EN 60754-1与EN 60754-2的比较
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-21 DOI: 10.3390/fire6080326
Iacopo Bassi, Claudia Bandinelli, Francesca Delchiaro, Marco Piana, Gianluca Sarti
{"title":"A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires V: Comparison between EN 60754-1 and EN 60754-2","authors":"Iacopo Bassi, Claudia Bandinelli, Francesca Delchiaro, Marco Piana, Gianluca Sarti","doi":"10.3390/fire6080326","DOIUrl":"https://doi.org/10.3390/fire6080326","url":null,"abstract":"Regulation (EU) No 305/2011 lays down harmonized conditions for marketing construction products in the European Union. One of its consequences has been the introduction of the product standard EN 50575 and standard EN 130501-6, concerning power, control, and communication cables permanently installed in buildings to prevent the risk of a fire and its consequences. EN 13501-6 provides the reaction to fire classifications for cables, the test methods to be performed, the requirements to meet a specific reaction to fire, and additional classifications for smoke production, flaming droplets, and acidity. It requires EN 60754-2 as the technical standard to assess acidity, and it defines three classes: a1, a2, and a3 (the less performant). Due to the release of hydrogen chloride during the combustion, acidity is the weak point of PVC cables, which are not yet capable of achieving the a1 or a2 classes required for specific locations according to fire risk assessments. EN 13501-6 does not include EN 60754-1, used in harmonized standards outside the scope of Regulation (EU) No 305/2011. EN 60754-1 and EN 60754-2 are common standards for determining halogen gas content, and acidity/conductivity, respectively. While they involve the same type of test apparatus, they differ in heating regimes, final temperatures, and detection methods. In particular, EN 60754-2 requires testing at temperatures between 935–965 °C in the tube furnace, where the sample burns, the smoke is collected in bubblers, and pH and conductivity are measured as an indirect assessment of acidity. On the other hand, the temperature regime of EN 60754-1 is a gradual heating run, followed by isothermal heating at 800 °C. The paper shows that when potent acid scavengers are used in PVC compounds, performing EN 60754-2 with the thermal profile of EN 60754-1 or at 500 °C in isothermal conditions, the evolution of hydrogen chloride changes significantly up to 10 times less than the test performed in isothermal at 950 °C. The reason lies behind the kinetic of hydrogen chloride release during the combustion of PVC compounds: the higher the temperature or faster the heat release, the quicker hydrogen chloride evolution and the lower the probability for the acid scavenger to trap it. Thus, these findings emphasize the “fragility” of EN 60754-2 as a tool for assessing risks associated with the release of hydrogen chloride during fires.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42062917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Temperature and Smoke Movement in the Event of a Fire in a Semiclosed Tunnel under Water Spray 水雾作用下半封闭隧道火灾温度及烟气运动研究
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-20 DOI: 10.3390/fire6080324
Bolun Li, Wei Zhang, Yucheng Li, Zhitao Zhang, Jinyang Dong, Y. Cui
{"title":"Study on the Temperature and Smoke Movement in the Event of a Fire in a Semiclosed Tunnel under Water Spray","authors":"Bolun Li, Wei Zhang, Yucheng Li, Zhitao Zhang, Jinyang Dong, Y. Cui","doi":"10.3390/fire6080324","DOIUrl":"https://doi.org/10.3390/fire6080324","url":null,"abstract":"Semiclosed tunnels are very common in engineering construction. They are not connected, so they easily accumulate heat. Once a fire breaks out in a semiclosed tunnel, the route for rescue workers to enter is limited, so it is tough to get close to the fire source. In this paper, taking a mine excavation roadway with local pressure ventilation as an example, the temperature field distribution and water spray fire prevention characteristics of the excavation roadway face were studied using numerical simulation and theoretical analysis. This paper provides an explanation of a dynamics-based smoke management method for water spraying in a semiclosed tunnel as well as the equilibrium relationship between droplet drag force and smoke buoyancy. A method was first developed to calculate the quantity of smoke blockage based on the thickness of the smoke congestion. The local ventilation and smoke movement created a circulating flow in the excavation face, which was discovered by investigating the velocity and temperature fields of the excavation face. The size of the high-temperature area and the pattern of temperature stratification varied due to this circulating flow. When local ventilation and sprinkler systems were operating simultaneously, when the volume of smoke was small, the smoke avoided the majority of the water spray effect with the circulation flow; however, when the volume of smoke was large, the effect of the circulation flow decreased and the smoke gathered close to the sprinkler head. At this time, the blocking effect of the water spray was significant. The mean square error analysis revealed that activating the sprinkler had the most significant cooling impact on the wall on one side of the air duct.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43413689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Distance-Based Analysis of Early Fire Indicators on a New Indoor Laboratory Dataset with Distributed Multi-Sensor Nodes 基于距离的分布式多传感器节点室内实验室早期火灾指标分析
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-18 DOI: 10.3390/fire6080323
Pascal Vorwerk, J. Kelleter, Steffen Müller, Ulrich Krause
{"title":"Distance-Based Analysis of Early Fire Indicators on a New Indoor Laboratory Dataset with Distributed Multi-Sensor Nodes","authors":"Pascal Vorwerk, J. Kelleter, Steffen Müller, Ulrich Krause","doi":"10.3390/fire6080323","DOIUrl":"https://doi.org/10.3390/fire6080323","url":null,"abstract":"This work analyzes a new indoor laboratory dataset looking at early fire indicators in controlled and realistic experiments representing different incipient fire scenarios. The experiments were performed within the constraints of an indoor laboratory setting using multiple distributed sensor nodes in different room positions. Each sensor node collected data of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), ultraviolet radiation (UV), air temperature, and humidity in terms of a multivariate time series. These data hold immense value for researchers within the machine learning and data science communities who are keen to explore innovative and advanced statistical and machine learning techniques. They serve as a valuable resource for the development of early fire detection systems. The analysis of the collected data was carried out depending on the Manhattan distance between the fire source and the sensor node. We found that especially larger particles (>0.5 μm) and VOCs show a significant dependency with respect to the intensity as a function of the Manhattan distance to the source. Moreover, we observed differences in the propagation behavior of VOCs, PM, and CO, which are particularly relevant in incipient fire scenarios due to the presence of strand propagation effects.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45725303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption 垂直和水平顶燃油连续性影响群体点火和燃油消耗
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-18 DOI: 10.3390/fire6080321
S. Ritter, C. Hoffman, M. Battaglia, R. Linn, W. Mell
{"title":"Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption","authors":"S. Ritter, C. Hoffman, M. Battaglia, R. Linn, W. Mell","doi":"10.3390/fire6080321","DOIUrl":"https://doi.org/10.3390/fire6080321","url":null,"abstract":"A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of horizontal and vertical forest structure on potential tree torching and large-tree mortality. It may be the case that fire behavior in spatially complex stands differs from predictions based on stand-level descriptors of the fuel distribution and structure. In this work, we used a spatially explicit fire behavior model to evaluate how the vertical and horizontal distribution of fuels influences the potential for fire to travel from the surface into overstory tree crowns. Our results support the understanding that crown fuels (e.g., needles and small-diameter branchwood) close to the surface can aid in this transition; however, we add important nuance by showing the interactive effect of overstory horizontal fuel connectivity. The influence of fuels low in the canopy space was overridden by the effect of horizontal connectivity at surface fire-line intensities greater than 1415 kW/m. For example, tree groups with vertically continuous fuels and limited horizontal connectivity sustained less large-tree consumption than tree groups with a significant vertical gap between the surface and canopy but high-canopy horizontal connectivity. This effect was likely the result of reduced net vertical heat transfer as well as decreased horizontal heat transfer, or crown-to-crown spread, in the upper canopy. These results suggest that the crown fire hazard represented by vertically complex tree groups is strongly mediated by the density, or horizontal connectivity, of the tree crowns within the group, and therefore, managers may be able to mitigate some of the torching hazard associated with vertically heterogenous tree groups.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46026307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Combustion of Liquid Fuels in the Presence of CO2 Hydrate Powder CO2水合物粉末存在下液体燃料的燃烧
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-15 DOI: 10.3390/fire6080318
S. Misyura, V. Morozov, I. Donskoy, N. Shlegel, V. Dorokhov
{"title":"Combustion of Liquid Fuels in the Presence of CO2 Hydrate Powder","authors":"S. Misyura, V. Morozov, I. Donskoy, N. Shlegel, V. Dorokhov","doi":"10.3390/fire6080318","DOIUrl":"https://doi.org/10.3390/fire6080318","url":null,"abstract":"The process of combustion of a liquid fuel layer (diesel, kerosene, gasoline, separated petroleum, and oil) in the presence of CO2 hydrate has been studied. These fuels are widely used in engineering, which explains the great interest in effective methods of extinguishing. Extinguishing liquid fuels is quite a complicated scientific and technical task. It is often necessary to deal with fire extinction during oil spills and at fuel burning in large containers outdoors and in warehouses. Recently, attention to new extinguishing methods has increased. Advances in technology of the production, storage, and transportation of inert gas hydrates enhance the opportunities of using CO2 hydrate for extinguishing liquid fuels. Previous studies have shown a fairly high efficiency of CO2 hydrate (compared to water spray) in the extinction of volumetric fires. To date, there are neither experimental data nor methods for determining the dissociation rate of CO2 hydrate powder at the time of the gas hydrate fall on the burning layer of liquid fuel. The value of the dissociation rate is important to know in order to determine the temperatures of stable combustion and, accordingly, the mass of CO2 hydrate required to extinguish the flame. For the first time, a method jointly accounting for both the combustion of liquid fuel and the dissociation rate of the falling powder of gas hydrate at a negative temperature is proposed. The combustion stability depends on many factors. This paper defines three characteristic modes of evaporation of a liquid fuel layer, depending on the prevalence of vapor diffusion or free gas convection. The influence of the diameter and height of the layer on the nature of fuel evaporation is investigated.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49508564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multifactorial Assessment of the Bioenergetic Potential of Residual Biomass of Pinus spp. in a Rural Community: From Functional Characterization to Mapping of the Available Energy Resource 农村社区松林剩余生物量生物能量潜力的多因子评价:从功能表征到有效能量资源映射
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-15 DOI: 10.3390/fire6080317
M. Morales-Máximo, L. López-Sosa, J. Alvarado-Flores, Jorge Víctor Alcaraz-Vera, Carlos A. García, Margarito Álvarez-Jara, J. G. Rutiaga-Quiñones
{"title":"Multifactorial Assessment of the Bioenergetic Potential of Residual Biomass of Pinus spp. in a Rural Community: From Functional Characterization to Mapping of the Available Energy Resource","authors":"M. Morales-Máximo, L. López-Sosa, J. Alvarado-Flores, Jorge Víctor Alcaraz-Vera, Carlos A. García, Margarito Álvarez-Jara, J. G. Rutiaga-Quiñones","doi":"10.3390/fire6080317","DOIUrl":"https://doi.org/10.3390/fire6080317","url":null,"abstract":"The generation of biomass residues in different productive activities of rural communities in Mexico represents an area of opportunity for the generation of bioenergy for various purposes. Solid biofuels (SBF), for example, are an alternative for the exploitation of these residues. The present study shows a comprehensive proposal for the analysis of residues of Pinus spp. generated by the artisanal sector of a rural community in Mexico. The proposal is based on four stages: a) characterization of the physico-chemical and functional properties of the residues, by Scanning Electron Microscopy (SEM), Infrared (FTIR) and Raman Spectroscopy, Thermogravimetry (TGA-DTG), determining the calorific coefficient and polymeric compounds present by fiber analysis; (b) spatial, temporal and dimensional analysis of the waste generated in the town studied; (c) assessment of the energy potential available in space and time; (d) definition of guidelines for the management of solid biofuels for the community through collection, processing and final disposal centers. The results of the assessment of timber residue from 50 artisan workshops that represent 25% of the total in the community show that the identified heating value of the dry residue ranges from 17.6 MJ/kg to 18.1 MJ/kg, attributed to the presence of polymeric compounds such as cellulose, hemicellulose and lignin, the latter in the order of 28%, which contributes to a high energy potential, and whose compounds were identified by TGA-DTG analysis, FTIR, SEM and fiber analysis. The energy potential was estimated at approximately 7 TJ/year for the analyzed workshops. In which case, the economic savings obtained from unburned firewood would amount to about $20,000 USD/year. As regards the reduction in firewood consumption due to the use of residues for energy purposes, about 350 Tn/year would be mitigated, which would reduce the community’s emissions by more than 76 TnCO2/year. A strategic management proposal was also established, aimed at providing spaces for the collection, processing and final disposal of solid biofuels from wood residues, which in sum represent an energy alternative that is sustainable in environmental, economic and social terms, for the same community.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47046671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation of Soot Formation in Ethylene Laminar Diffusion Flame 乙烯层流扩散火焰中烟尘形成的数值模拟
IF 3.2 3区 农林科学
Fire-Switzerland Pub Date : 2023-08-14 DOI: 10.3390/fire6080316
Xiuyan Gao, Fan Yang, Chuan-Xin Zhang, Qixiang Chen, Yuan Yuan
{"title":"Numerical Simulation of Soot Formation in Ethylene Laminar Diffusion Flame","authors":"Xiuyan Gao, Fan Yang, Chuan-Xin Zhang, Qixiang Chen, Yuan Yuan","doi":"10.3390/fire6080316","DOIUrl":"https://doi.org/10.3390/fire6080316","url":null,"abstract":"The soot produced by fossil fuel combustion affects climate and human health, and the ethylene laminar flame is a crucial research object of soot generation. After verifying the accuracy of the numerical calculation model by comparing experimental data, the impact of changes in inlet flow rate and fuel flow composition operating conditions on the generation of soot were compared and analyzed. The calculated results obtained are consistent with the experimental data in terms of distribution trend. The deviation of the calculated peak integral smoke volume fraction is only 5%. Under the operating conditions set in this study, increasing the volume flow rate of the accompanying air will increase the volume fraction of soot generated by the ethylene laminar diffusion flame. Increasing the fuel volume flow rate will first increase and then decrease the volume fraction of soot.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46066061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信