P. Xofis, Peter G. Buckley, George Kefalas, M. Chalaris, J. Mitchley
{"title":"火灾对地中海东北部生态系统土壤性质的中期影响","authors":"P. Xofis, Peter G. Buckley, George Kefalas, M. Chalaris, J. Mitchley","doi":"10.3390/fire6090337","DOIUrl":null,"url":null,"abstract":"Fire is a fundamental ecological process with a long history on Earth, determining the distribution of vegetation formations across the globe. Fire, however, does not only affect the vegetation but also the soil on which vegetation grows, creating a post-fire environment that differs significantly in terms of soil chemical and physical properties from the pre-fire environment. The duration of these alterations remains largely unknown and depends both on the vegetation condition and the fire characteristics. In the current study, we investigate the effect of fire on some chemical and physical properties 11 years after the event in four plant communities. Two of them constitute typical Mediterranean fire-prone plant communities, dominated by sclerophyllous Mediterranean shrubs, such as Quercus coccifera and Q. ilex, while the other two are not considered fire prone and are dominated by deciduous broadleaved species such as Q. petraea and Castanea sativa, respectively. The results indicate that fire affects the soil properties of the various communities in a different manner. Burned sites in the Q. coccifera community have a significantly lower concentration of organic matter, total nitrogen, and available magnesium. At the same time, they have a significantly higher concentration of sand particles and a lower concentration of clay particles. The effect of fire on the soil properties of the other three communities is less dramatic, with differences only in total phosphorus, organic matter, and total nitrogen. The results are discussed in relation to the site conditions and the post-fire regeneration of plant communities.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mid-Term Effects of Fire on Soil Properties of North-East Mediterranean Ecosystems\",\"authors\":\"P. Xofis, Peter G. Buckley, George Kefalas, M. Chalaris, J. Mitchley\",\"doi\":\"10.3390/fire6090337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire is a fundamental ecological process with a long history on Earth, determining the distribution of vegetation formations across the globe. Fire, however, does not only affect the vegetation but also the soil on which vegetation grows, creating a post-fire environment that differs significantly in terms of soil chemical and physical properties from the pre-fire environment. The duration of these alterations remains largely unknown and depends both on the vegetation condition and the fire characteristics. In the current study, we investigate the effect of fire on some chemical and physical properties 11 years after the event in four plant communities. Two of them constitute typical Mediterranean fire-prone plant communities, dominated by sclerophyllous Mediterranean shrubs, such as Quercus coccifera and Q. ilex, while the other two are not considered fire prone and are dominated by deciduous broadleaved species such as Q. petraea and Castanea sativa, respectively. The results indicate that fire affects the soil properties of the various communities in a different manner. Burned sites in the Q. coccifera community have a significantly lower concentration of organic matter, total nitrogen, and available magnesium. At the same time, they have a significantly higher concentration of sand particles and a lower concentration of clay particles. The effect of fire on the soil properties of the other three communities is less dramatic, with differences only in total phosphorus, organic matter, and total nitrogen. The results are discussed in relation to the site conditions and the post-fire regeneration of plant communities.\",\"PeriodicalId\":36395,\"journal\":{\"name\":\"Fire-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire-Switzerland\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fire6090337\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6090337","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Mid-Term Effects of Fire on Soil Properties of North-East Mediterranean Ecosystems
Fire is a fundamental ecological process with a long history on Earth, determining the distribution of vegetation formations across the globe. Fire, however, does not only affect the vegetation but also the soil on which vegetation grows, creating a post-fire environment that differs significantly in terms of soil chemical and physical properties from the pre-fire environment. The duration of these alterations remains largely unknown and depends both on the vegetation condition and the fire characteristics. In the current study, we investigate the effect of fire on some chemical and physical properties 11 years after the event in four plant communities. Two of them constitute typical Mediterranean fire-prone plant communities, dominated by sclerophyllous Mediterranean shrubs, such as Quercus coccifera and Q. ilex, while the other two are not considered fire prone and are dominated by deciduous broadleaved species such as Q. petraea and Castanea sativa, respectively. The results indicate that fire affects the soil properties of the various communities in a different manner. Burned sites in the Q. coccifera community have a significantly lower concentration of organic matter, total nitrogen, and available magnesium. At the same time, they have a significantly higher concentration of sand particles and a lower concentration of clay particles. The effect of fire on the soil properties of the other three communities is less dramatic, with differences only in total phosphorus, organic matter, and total nitrogen. The results are discussed in relation to the site conditions and the post-fire regeneration of plant communities.