Mohammed E. Elgack , Khaled Al-Souqi , Mohammad O. Hamdan , Mohamed Abdelgawad
{"title":"Compressibility effects in microchannel flows between two-parallel plates at low reynolds and mach numbers: Numerical analysis","authors":"Mohammed E. Elgack , Khaled Al-Souqi , Mohammad O. Hamdan , Mohamed Abdelgawad","doi":"10.1016/j.ijft.2024.100921","DOIUrl":"10.1016/j.ijft.2024.100921","url":null,"abstract":"<div><div>Under certain circumstances, flow in microchannels can exhibit compressibility effects even at Reynolds numbers (<em>Re</em>) around (below 2,300) and low Mach numbers (below 0.3). This is particularly true for gases, especially when the flow undergoes significant pressure changes or acceleration within the microchannel. This study investigates the compressibility effects encountered in two-parallel plates microchannels at these low Reynolds and Mach numbers, due to the high-pressure drop associated with the small scale of the microchannels. This uncommon flow is characterized by an exceptionally small channel diameter-to-length aspect ratio (∼10<sup>–3</sup>), resulting in a friction coefficient that deviates from the typical value for laminar flow between parallel plates (<em>f</em> = 96/<em>Re</em>). Both steady and transient effects on the flow field are examined under low <em>Re</em> subsonic flow, assuming continuum behavior. The ideal gas equation is used to model gas density, while the isothermal Tait-Murnaghan equation models liquid density. For gases, compressibility effects are observed primarily when the inlet pressure ratio exceeds 0.1. The results show that these effects are less pronounced for liquids, even at elevated inlet pressure ratios. Additionally, a flow delay across the channel exhibits a first-order transient response. For liquid flow, this effect depends on the channel resistance, the total fluid volume within the channel, and the liquid's bulk properties, rather than the inlet pressure ratio.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100921"},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Renewable energy as an auxiliary to heat pumps: Performance evaluation of hybrid solar-geothermal-systems","authors":"Rabih Murr , Jalal Faraj , Hicham El Hage , Mahmoud Khaled","doi":"10.1016/j.ijft.2024.100922","DOIUrl":"10.1016/j.ijft.2024.100922","url":null,"abstract":"<div><div>The aim of this study is to combine renewable energy sources with heat pumps so that the usage of electricity needed to operate heat pumps is minimized along with associated fuel combustion. The aforementioned objective leads to reduce the energy consumption, the operational cost and the environmental impact of the heat pump. To minimize the usage of electricity, it is proposed that the heat pump (HP) system is combined by two renewable energy systems, a Solar Air Heater (SAH) and a Geothermal Well Water (G). To enrich this study, five prospective combinations of Heat Pump (HP), Solar Air Heater (SAH) placed Upstream (U) and Downstream (D) of the condenser, and Geothermal Water Well (G) were investigated. Hereafter, these five combinations are referred as HP-G, HP-S-U, HP-S-D, HP-G-S-U and HP-G-S-D. The thermal modeling of the aforementioned combinations in addition to baseline HP were developed and examined using an in-house computational code. To ensure that the input data used in the computational code are reliable, experiments were conducted to validate that the geothermal water temperature is higher than the ambient temperature in winter, in addition to confirming the analytical thermal modeling of the solar air heater. Numerical analyses and associated parametric studies revealed that the combination of Solar Air Heater (SAH) and a Geothermal Well Water (G) can efficiently increase the performance of the system by reducing the power needed to operate the compressor of HP. The gain in COP was found to be 48, 43, 81, 105 and 191 % for HP-G, HP-S-U, HP-S-D, HP-G-S-U and HP-G-S-D respectively. In addition, results revealed that the most efficient system is the (HP-G-S-D) for all simulated conditions and assumptions with a gain in COP that can reach up to 191 % in comparison to the baseline heat pump system.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100922"},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dheyaa J. Jasim , Ali B.M. Ali , Abdulrahman A. Almehizia , Amer Alhaj Zen , Soheil Salahshour , Sh. Esmaeili
{"title":"Effect of external force on the dispersion of particles and permeability of substances via carbon nanotubes in reverse electrodialysis using molecular dynamics simulation","authors":"Dheyaa J. Jasim , Ali B.M. Ali , Abdulrahman A. Almehizia , Amer Alhaj Zen , Soheil Salahshour , Sh. Esmaeili","doi":"10.1016/j.ijft.2024.100915","DOIUrl":"10.1016/j.ijft.2024.100915","url":null,"abstract":"<div><h3>Background</h3><div>Using novel technologies and solutions is crucial for producing clean water. There are different ways to remove dissolved salts from water.</div></div><div><h3>Methods</h3><div>This study aimed to analyze the effect of an external force (EF) on the morphology of channels, the dispersion of particles, and the permeability of substances via carbon nanotubes in reverse electrodialysis. It was done using a computer simulation that studied the movement of molecules. This research aimed to study the effect of EF on the dispersion of particles and permeability of substances via carbon nanotubes using a reverse electrodialysis approach. The results show that increasing the EF from 0.0001 to 0.0005 eV/Å increased the electric current and fluid flow intensity from 5.31 e/ns and 211.31 atom/ns to 5.62 e/ns and 263.01 atom/ns. Moreover, the density decreased from 4.83 to 4.66 atom/nm<sup>3</sup>. Furthermore, the number of broken hydrogen bonds increased from 116 to 166.</div></div><div><h3>Significant findings</h3><div>By understanding the effect of EF on particle movement and material passage through carbon nanotubes, researchers can optimize the design of reverse electrodialysis systems to enhance their performance. This can lead to more effective and cost-efficient water treatment solutions, crucial for producing clean water.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100915"},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of pin fins on heat transfer during condensation in minichannel heat exchanger","authors":"Fadi Alnaimat , Mohamed Daadoua , Bobby Mathew","doi":"10.1016/j.ijft.2024.100917","DOIUrl":"10.1016/j.ijft.2024.100917","url":null,"abstract":"<div><div>In this study, condensation heat transfer of water vapor in a minichannel heat exchanger on smooth and pin fins surfaces was investigated experimentally. The experimental study was carried out to evaluate heat transfer coefficient, overall heat transfer coefficient, and Nusselt number over different ranges of vapor mass flux from 0.0064 to 0.0368 kg m<sup>−2</sup> s<sup>−1</sup> and cold-water flow rate range between 0.0013 kg s<sup>−1</sup> to 0.0057 kg s<sup>−1</sup>. The minichannel has a rectangular shape with a hydraulic diameter of 1.3 mm. The experimental testing is carried out on aluminum surface with a channel that has a length of 270, width of 30 mm, and height of 1.3 mm. The pin fins surface is on the bottom of the condensing channel and the fins are circular and have diameter, height, and spacing of 1 mm, and are in-inline arrangement. It is found that condensation heat transfer coefficient on pin fins surface is about 15 % higher than that on smooth surface. It is found that the condensation heat transfer coefficient increases significantly with increasing the vapor mass flux. In addition, the effect of increasing the cold fluid flow rate is lower than that of the hot vapor flow rate, but it becomes more significant for higher vapor flux.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100917"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamza K. Mukhtar, Ahmed Fadlalla, Rania Ibrahim, Saud Ghani
{"title":"Numerical investigation of the flow characteristics inside a supersonic vapor ejector","authors":"Hamza K. Mukhtar, Ahmed Fadlalla, Rania Ibrahim, Saud Ghani","doi":"10.1016/j.ijft.2024.100912","DOIUrl":"10.1016/j.ijft.2024.100912","url":null,"abstract":"<div><div>Integrating a vapor ejector with an air-cooled absorption cooling system (ACS) requires understanding how the ejector responds to varying condenser conditions and how the geometrical parameters affect the system's performance. This study provides a numerical investigation of the flow characteristics inside supersonic vapor ejectors. The primary objectives were identifying the best nozzle design for ACS and explaining how the secondary flow responds to different back pressures. The developed model was validated against experimental data and a one-dimensional model. Despite exhibiting increased flow fluctuations, the convex nozzle achieved an entrainment ratio of 0.4. This value was 4.9 % and 7 % higher than the values obtained by the straight and the concave nozzles, respectively. In contrast, the concave nozzle exhibits better flow stability and pressure recovery, which are considered appealing for the air-cooled ACS. The straight nozzle emerged as a balanced alternative, offering moderate entrainment alongside favorable flow stability. Moreover, secondary flow behavior at different operating modes was elaborated. Secondary flow choked at back pressures between 60–70 kPa, indicating optimal entrainment. However, at 75–80 kPa, while the secondary flow was entrained, it failed to reach sonic speed due to high-pressure waves, resulting in the sub-critical condition. Further increases in back pressure to 85–90 kPa induced back-flow due to elevated local static pressure. Mach number profiles at the mixing tube entrance remained consistent under critical operation but deviated post-critical back pressure, reflecting altered flow characteristics downstream of the mixing tube. Such elaboration of flow dynamics within ejectors paves the way for innovative designs of vapor ejectors, potentially developing ACS.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100912"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Sathish , K. Muthukumar , R. Saravanan , Jayant Giri
{"title":"Optimized thermal pretreatment for lignocellulosic biomass of pigeon pea stalks to augment quality and quantity of biogas production","authors":"T. Sathish , K. Muthukumar , R. Saravanan , Jayant Giri","doi":"10.1016/j.ijft.2024.100911","DOIUrl":"10.1016/j.ijft.2024.100911","url":null,"abstract":"<div><div>By applying heat to the feedstock during the thermal treatment of biomass for the production of biogas, the organic material's biodegradability can be greatly increased. Biogas production is a huge research area for alternate energy production technology. Increased biodegradability, improved methane yield, pathogen, and weed seed destruction, and overall process efficiency are all benefits of this type of pretreatment. It is a useful pretreatment technique for maximizing the production of biogas because it can decrease inhibitory compounds, and increase the digestibility of biomass. This work focused on increasing the efficiency of biogas production from lignocellulosic biomass of pigeon pea stalks by a novel thermal pretreatment. The pigeon pea stalk is initially imposed to physical pretreatment (PT) by an automatic hammer mill which is considered as a base for comparing performance. Thermal pretreatment was carried out for one hour, and two hours durations at different temperatures like 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C. Compared to physically pretreated pigeon pea stalks, 200ᴼC thermal pretreated pigeon pea stalks for two hours have produced 88.41 % higher biogas, 16.14 % increase of cellulose, 19.9 % higher volatile solid removal, and 3.94 % lesser lignin. The enhanced chemical characteristics were ensured by analyzing the chemical composition variations through the FTIR, XRD, and SEM images. So, this is recommended for enhanced biogas production.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100911"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hussain Madhi , Sattar Aljabair , Ahmed Abdulnabi Imran
{"title":"Comparative numerical study on the effect of fin orientation on the photovoltaic/thermal (PV/T) system performance","authors":"Hussain Madhi , Sattar Aljabair , Ahmed Abdulnabi Imran","doi":"10.1016/j.ijft.2024.100909","DOIUrl":"10.1016/j.ijft.2024.100909","url":null,"abstract":"<div><div>The thermal performance of a photovoltaic (PV) system is highly influenced by cooling its surface temperature. In this study, a series of cooling modules are developed, including fin turbulators within a serpentine channel placed on the rear side of a photovoltaic/thermal (PV/T) system. These modules are designed to effectively cool the PV/T system, ensuring uniform temperature distribution and enhancing the system efficiency. The study examines fins at four different angles within the serpentine channel, namely 30°, 45°, 60°, and 90° The water was employed as a cooling fluid in the study, operated under laminar flow conditions, with five Reynolds number values, ranging from 250 to 1250 with 250 increment. Every PV/T system has 108 fins with an area of 600 mm2 for each. Numerical simulations were conducted to predict the flow fields resulting from each fin configuration in the serpentine channel. The electrical and thermal efficiency of the PV/T collector was evaluated for the fin configuration with better thermal performance. Results showed that fins oriented with 30° provided the best thermal performance, while fins at 90° orientation achieved maximum heat transfer coefficient. Moreover, the electrical efficiency of the proposed PV/T system could be improved by 0.8 % to 1.5 % compared to a standard PV/T system. In addition, the PV/T system demonstrated a remarkable thermal efficiency of up to 59 % at 90° fin orientation.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100909"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of flow dynamics and heat transfer behavior of nanofluid in microchannel with rough surfaces","authors":"Ali Kashani , Rassol Hamed Rasheed , Muntadher Abed Hussein , Omid Ali Akbari , Hadeel Kareem Abdul-Redha , Gholamreza Ahmadi , Soheil Salahshour , Rozbeh Sabetvand","doi":"10.1016/j.ijft.2024.100901","DOIUrl":"10.1016/j.ijft.2024.100901","url":null,"abstract":"<div><div>Microchannels containing cooling fluid are among the most widely used equipment in the cooling of microscale devices, such as heat sinks in the electronics industry. In this numerical research, the flow of water/magnesium-oxide nanofluid in a 3D rectangular microchannel is simulated and investigated. The flow field and heat transfer are analyzed for the laminar flow with Reynold number (<em>Re</em>)= 100, 300, 700, and 1000 and nanoparticle volume fraction (<em>φ</em>) =0, 0.02, and 0.04. The rough surfaces include rectangular cubic ribs arranged in three one in each row along the length with 2, 3, 4, and 5 rows. The ribbed surface is under a constant heat flux. The results include examining changes in Nusselt number (<em>Nu)</em>, pressure drop, pumping power, friction factor, and total flow entropy generation. Moreover, the contours of the temperature, pressure, and velocity distribution fields will be discussed. The results reveal that the heat transfer and physics of flow are highly dependent on hydrodynamic behavior. Increasing the number of ribs on the hot surfaces increases the pressure drop, pumping power, and heat transfer. Increasing <em>φ</em> also greatly affects the heat transfer rate. In the case of using 5 ribs and with <em>φ</em>=0.04, in <em>Re</em>=1000 and 700, the microchannel has the highest average <em>Nu</em>, pressure drop, and pumping power.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100901"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Manuel Tovar , Guillermo Valencia Ochoa , Daniel Mendoza Casseres
{"title":"Thermodynamic and environmental comparative analysis of a dual loop ORC and Kalina as bottoming cycle of a solar Brayton sCO2","authors":"José Manuel Tovar , Guillermo Valencia Ochoa , Daniel Mendoza Casseres","doi":"10.1016/j.ijft.2024.100895","DOIUrl":"10.1016/j.ijft.2024.100895","url":null,"abstract":"<div><div>Solar energy as a thermal source has become a viable and thermo-sustainable option to generate heat, for the energy production through power cycle configurations. In this article, the balances and application of life cycle analysis (LCA) allowed to proposed thermodynamic models in order to conduct a comparative study of the energy, exergy and environmental performance of two hybrid power generation systems using a supercritical carbon dioxide Brayton with recompression, intercooling and reheating (sCO<sub>2</sub>) as the main cycle coupled to two waste heat recovery technologies: dual loop Rankine organic cycle (DORC) and Kalina cycle (KC). The results showed that the Brayton sCO<sub>2</sub>/DORC configuration presented better exergetic performance using Toluene (23.98%), Cyclohexane (24.01%), and Acetone (24.06%) as working fluids concerning the Brayton sCO<sub>2</sub>/KC configuration with a 23.82%. In addition, the solar field was the component with the highest irreversibility rate (∼61.6%) when the system operated at 100% solar energy. In terms of environmental impact, the results indicate that the concentrating solar power (CSP) tower is the device that generates the most emissions in the systems studied (∼90%). Acetone was found to be 36% more polluting than the working fluid used in the sCO<sub>2</sub>/KC system (Ammonia). In addition, aluminum as a construction material emits 5.26 % more kg CO<sub>2</sub>-equi than steel in both systems. Also, the construction phase is the LCA stage that has the greatest impact, representing approximately 95.4% of the total emissions, followed by the decommissioning phase (4.5%) and operation (0.05%). These results show good thermo-sustainable performances that in conjunction with thermo-economic optimizations could achieve solutions applicable to the local industrial sector.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100895"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermo-hydraulic performance of concentric tube heat exchangers with turbulent flow: Predictive correlations and iterative methods for pumping power and heat transfer","authors":"Samer Ali , Chadi Nohra , Jalal Faraj , Talib Dbouk , Mahmoud Khaled","doi":"10.1016/j.ijft.2024.100898","DOIUrl":"10.1016/j.ijft.2024.100898","url":null,"abstract":"<div><div>This research addresses the problem of predicting the thermo-hydraulic performance of concentric tube heat exchangers (CTHE) under turbulent flow conditions, a critical aspect in energy-efficient industrial systems such as HVAC, power generation, and chemical processing. Existing studies often lack accurate predictive methods for balancing heat transfer performance with pumping power requirements. To tackle this issue, novel correlations and an iterative Newton–Raphson method were developed for predicting pumping power and heat transfer rates. Three-dimensional CFD simulations of a water-to-water counter-flow CTHE were conducted, with Reynolds numbers ranging from 4000 to 8000 for both the hot and cold fluids. The simulations employed the Reynolds-Averaged Navier–Stokes (RANS) equations with the <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> SST turbulence model. The results demonstrated that increasing the Reynolds number enhances both heat transfer rates and pumping power, with the cold fluid requiring consistently higher pumping power. New correlations were developed to predict pumping power, capturing the impact of both entry and fully developed flow regions. These correlations showed an average error of less than 2.33% when compared with the CFD data. The iterative Newton–Raphson method for predicting heat transfer rates demonstrated high accuracy, with an average error of 0.66% for heat transfer rate, 0.03% for hot fluid outlet temperature, and 0.01% for cold fluid outlet temperature. Additionally, we identified optimal operating conditions for efficient cooling and heating based on the heat capacity ratio (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>). The novelty of this work lies in the development of new, highly accurate predictive correlations and iterative methods for optimizing CTHE performance, going beyond existing literature by providing comprehensive insights into the relationship between pumping power, heat transfer efficiency, and flow conditions.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100898"},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}