具有Soret-Dufour效应的混合纳米流体辐射流中回旋微生物局部热非平衡效应的热和溶质分析

Q1 Chemical Engineering
Munawar Abbas , Mostafa Mohamed Okasha , Tatyana Orlova , Ali Akgül , Murad Khan Hassani , Saba Liaqat
{"title":"具有Soret-Dufour效应的混合纳米流体辐射流中回旋微生物局部热非平衡效应的热和溶质分析","authors":"Munawar Abbas ,&nbsp;Mostafa Mohamed Okasha ,&nbsp;Tatyana Orlova ,&nbsp;Ali Akgül ,&nbsp;Murad Khan Hassani ,&nbsp;Saba Liaqat","doi":"10.1016/j.ijft.2025.101355","DOIUrl":null,"url":null,"abstract":"<div><div>The present research investigates the impact of local thermal non-equilibrium on radiative flow of a hybrid nanofluid around a revolving sphere in the presence of gyrotactic microbes and porous medium. To explore heat transfer characteristics in cases where LTE (local thermal equilibrium) is not assumed, the research provides use of a basic mathematical model. In LTNE conditions, the solid and liquid phases experience distinct thermal gradients. SWCNTs (Single-walled carbon nanotubes) and MWCNTs (multi-walled carbon nanotubes) suspended in water make up the hybrid nanofluid under discussion. In order to compare the modified model's heat transfer performance with that of the conventional Hamilton-Crosser model, this study specifically concentrate at the hybrid nanofluid that consists of MWCNTs, SWCNTs, and water. To convert the constitutive equations into ODEs, similarity variables were used. and MATLAB's Bvp4c function has been employed to find solutions. The results suggest that relative to the modified model, classical model can predict increased heat transmission rates with adequate precision. The findings improve the precision of models for thermal conductivity and advance our considerate of the properties of hybrid nanofluid heat transfer. The solid-phase thermal field and the liquid-phase thermal transmission rate both decrease with increasing interphase heat transfer factor in both the modified and classical Hamilton–Crosser models.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101355"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and solutal analysis of local thermal non-equilibrium effects on gyrotactic microbes in radiative flow of hybrid nanofluid with Soret–Dufour effects\",\"authors\":\"Munawar Abbas ,&nbsp;Mostafa Mohamed Okasha ,&nbsp;Tatyana Orlova ,&nbsp;Ali Akgül ,&nbsp;Murad Khan Hassani ,&nbsp;Saba Liaqat\",\"doi\":\"10.1016/j.ijft.2025.101355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present research investigates the impact of local thermal non-equilibrium on radiative flow of a hybrid nanofluid around a revolving sphere in the presence of gyrotactic microbes and porous medium. To explore heat transfer characteristics in cases where LTE (local thermal equilibrium) is not assumed, the research provides use of a basic mathematical model. In LTNE conditions, the solid and liquid phases experience distinct thermal gradients. SWCNTs (Single-walled carbon nanotubes) and MWCNTs (multi-walled carbon nanotubes) suspended in water make up the hybrid nanofluid under discussion. In order to compare the modified model's heat transfer performance with that of the conventional Hamilton-Crosser model, this study specifically concentrate at the hybrid nanofluid that consists of MWCNTs, SWCNTs, and water. To convert the constitutive equations into ODEs, similarity variables were used. and MATLAB's Bvp4c function has been employed to find solutions. The results suggest that relative to the modified model, classical model can predict increased heat transmission rates with adequate precision. The findings improve the precision of models for thermal conductivity and advance our considerate of the properties of hybrid nanofluid heat transfer. The solid-phase thermal field and the liquid-phase thermal transmission rate both decrease with increasing interphase heat transfer factor in both the modified and classical Hamilton–Crosser models.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"29 \",\"pages\":\"Article 101355\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725003015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在回旋微生物和多孔介质存在下,局部热不平衡对混合纳米流体绕旋转球体辐射流动的影响。为了探索不假设LTE(局部热平衡)情况下的传热特性,该研究提供了一个基本的数学模型的使用。在LTNE条件下,固相和液相经历不同的热梯度。悬浮在水中的SWCNTs(单壁碳纳米管)和MWCNTs(多壁碳纳米管)构成了所讨论的混合纳米流体。为了比较改进模型与传统Hamilton-Crosser模型的传热性能,本研究特别关注由MWCNTs、SWCNTs和水组成的混合纳米流体。为了将本构方程转化为ode,使用了相似变量。并利用MATLAB的Bvp4c函数求解。结果表明,与修正后的模型相比,经典模型能较准确地预测传热率的增加。这一发现提高了导热模型的精度,促进了我们对混合纳米流体传热特性的认识。在修正的Hamilton-Crosser模型和经典的Hamilton-Crosser模型中,固相热场和液相热传递率都随着相间传热因子的增大而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal and solutal analysis of local thermal non-equilibrium effects on gyrotactic microbes in radiative flow of hybrid nanofluid with Soret–Dufour effects
The present research investigates the impact of local thermal non-equilibrium on radiative flow of a hybrid nanofluid around a revolving sphere in the presence of gyrotactic microbes and porous medium. To explore heat transfer characteristics in cases where LTE (local thermal equilibrium) is not assumed, the research provides use of a basic mathematical model. In LTNE conditions, the solid and liquid phases experience distinct thermal gradients. SWCNTs (Single-walled carbon nanotubes) and MWCNTs (multi-walled carbon nanotubes) suspended in water make up the hybrid nanofluid under discussion. In order to compare the modified model's heat transfer performance with that of the conventional Hamilton-Crosser model, this study specifically concentrate at the hybrid nanofluid that consists of MWCNTs, SWCNTs, and water. To convert the constitutive equations into ODEs, similarity variables were used. and MATLAB's Bvp4c function has been employed to find solutions. The results suggest that relative to the modified model, classical model can predict increased heat transmission rates with adequate precision. The findings improve the precision of models for thermal conductivity and advance our considerate of the properties of hybrid nanofluid heat transfer. The solid-phase thermal field and the liquid-phase thermal transmission rate both decrease with increasing interphase heat transfer factor in both the modified and classical Hamilton–Crosser models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信