OpenFOAM的增强涡轮机械功能:CAD解决方案和混合平面的验证和集成

Q1 Chemical Engineering
Lorenz Hammerschmidt, Zlatko Raonic
{"title":"OpenFOAM的增强涡轮机械功能:CAD解决方案和混合平面的验证和集成","authors":"Lorenz Hammerschmidt,&nbsp;Zlatko Raonic","doi":"10.1016/j.ijft.2025.101341","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an enhanced, open-source workflow for turbomachinery design and simulation by integrating a fully parametric CAE solution (<em>pyTurbo</em>) with a modified OpenFOAM solver (<em>turboSimpleFoam</em>) capable of handling mixing-plane interfaces and rothalpy-based energy modelling. The new workflow bridges the gap between geometry generation and compressible CFD analysis for radial machines, enabling rapid, scriptable, and reproducible design iterations. The underlying geometry engine, <em>pyNURBS</em>, offers robust NURBS-based operations for high-fidelity construction of turbomachinery components including blades, casings, and volutes. The framework is validated using the Sundstrand Power Systems T-100 radial turbine as a benchmark, comparing geometry and simulation results with ANSYS BladeGen, ANSYS CFX, and experimental data. Results demonstrate strong agreement in geometry and performance metrics, with efficiency deviations below 2% and mass flow errors under 1%, confirming the viability of the framework as an open-source alternative to commercial CAE pipelines. Moreover, this implementation establishes a solid foundation for future research in turbomachinery design, including structural analysis, multi-region solving, and automated optimisation loops, thereby enabling seamless integration of CAD and CFD workflows within the OpenFOAM ecosystem.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101341"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced turbomachinery capabilities for OpenFOAM: Validation and integration of a CAD solution and mixing-plane\",\"authors\":\"Lorenz Hammerschmidt,&nbsp;Zlatko Raonic\",\"doi\":\"10.1016/j.ijft.2025.101341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an enhanced, open-source workflow for turbomachinery design and simulation by integrating a fully parametric CAE solution (<em>pyTurbo</em>) with a modified OpenFOAM solver (<em>turboSimpleFoam</em>) capable of handling mixing-plane interfaces and rothalpy-based energy modelling. The new workflow bridges the gap between geometry generation and compressible CFD analysis for radial machines, enabling rapid, scriptable, and reproducible design iterations. The underlying geometry engine, <em>pyNURBS</em>, offers robust NURBS-based operations for high-fidelity construction of turbomachinery components including blades, casings, and volutes. The framework is validated using the Sundstrand Power Systems T-100 radial turbine as a benchmark, comparing geometry and simulation results with ANSYS BladeGen, ANSYS CFX, and experimental data. Results demonstrate strong agreement in geometry and performance metrics, with efficiency deviations below 2% and mass flow errors under 1%, confirming the viability of the framework as an open-source alternative to commercial CAE pipelines. Moreover, this implementation establishes a solid foundation for future research in turbomachinery design, including structural analysis, multi-region solving, and automated optimisation loops, thereby enabling seamless integration of CAD and CFD workflows within the OpenFOAM ecosystem.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"29 \",\"pages\":\"Article 101341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725002873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725002873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过将全参数CAE解决方案(pyTurbo)与改进的OpenFOAM求解器(turboSimpleFoam)集成在一起,提出了一种增强的、开源的涡轮机械设计和仿真工作流程,该解决方案能够处理混合平面接口和基于rothalpy的能量建模。新的工作流程弥合了径向机床几何图形生成和可压缩CFD分析之间的差距,实现了快速、可脚本化和可重复的设计迭代。底层几何引擎pyNURBS为涡轮机械部件(包括叶片、外壳和蜗壳)的高保真构造提供了强大的基于nurbs的操作。该框架以Sundstrand Power Systems T-100径向涡轮机为基准进行验证,将几何形状和仿真结果与ANSYS BladeGen、ANSYS CFX和实验数据进行比较。结果表明,该框架在几何形状和性能指标上非常一致,效率偏差低于2%,质量流量误差低于1%,证实了该框架作为商用CAE管道的开源替代方案的可行性。此外,这一实现为未来涡轮机械设计的研究奠定了坚实的基础,包括结构分析、多区域求解和自动优化循环,从而在OpenFOAM生态系统中实现CAD和CFD工作流程的无缝集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced turbomachinery capabilities for OpenFOAM: Validation and integration of a CAD solution and mixing-plane
This study presents an enhanced, open-source workflow for turbomachinery design and simulation by integrating a fully parametric CAE solution (pyTurbo) with a modified OpenFOAM solver (turboSimpleFoam) capable of handling mixing-plane interfaces and rothalpy-based energy modelling. The new workflow bridges the gap between geometry generation and compressible CFD analysis for radial machines, enabling rapid, scriptable, and reproducible design iterations. The underlying geometry engine, pyNURBS, offers robust NURBS-based operations for high-fidelity construction of turbomachinery components including blades, casings, and volutes. The framework is validated using the Sundstrand Power Systems T-100 radial turbine as a benchmark, comparing geometry and simulation results with ANSYS BladeGen, ANSYS CFX, and experimental data. Results demonstrate strong agreement in geometry and performance metrics, with efficiency deviations below 2% and mass flow errors under 1%, confirming the viability of the framework as an open-source alternative to commercial CAE pipelines. Moreover, this implementation establishes a solid foundation for future research in turbomachinery design, including structural analysis, multi-region solving, and automated optimisation loops, thereby enabling seamless integration of CAD and CFD workflows within the OpenFOAM ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信