N. Deepa , P. Kavya , N. Thamaraikannan , S. Madhanraj , P. Asaigeethan , K. Loganathan
{"title":"Fuzzy volume fraction model representation of blood-based sisko tri-hybrid nanofluid flow via a stretching cylinder","authors":"N. Deepa , P. Kavya , N. Thamaraikannan , S. Madhanraj , P. Asaigeethan , K. Loganathan","doi":"10.1016/j.ijft.2025.101354","DOIUrl":null,"url":null,"abstract":"<div><div>A modified variant of Buongiorno's model was used to analyze the transfer of a ternary hybrid nanofluid (thnf) across a stretched cylinder using the Sisko fluid model. The effect of homogeneous-heterogeneous reactions on the chemical process for the nanoparticle concentration is considered. The dispersion has resulted in the formation of a ternary hybrid nanofluid consisting of titanium dioxide (TiO<sub>2</sub>), gold (<em>Au</em>), and silver (<em>Ag</em>) nanocomposites in a base fluid (blood). A system of partial differential equations (PDEs) determines the fluid flow, considering the impact of a heat source, magnetic induction, and natural convection. The process involves using substitutions for similarity variables to convert them into a collection of non-dimensional ordinary differential equations (ODEs). This analysis specifically examines the no-slip assumption, which results in a nonlinear Dirichlet boundary condition for axial velocity. A triangular fuzzy number (TFNs) with the range [0, 0.5, 1.0] is used to analyze the unknown volume of ternary hybrid nanoparticles consisting of TiO<sub>2</sub>, <em>Au</em>, and <em>Ag</em>. The triangular membership function (TMF) is utilized to analyze the variability of uncertainty, while the α− <em>cut</em> is responsible for controlling the TFNs. Analysis of fuzzy linear regression analysis utilizes triangular fuzzy numbers (TFNs) to ascertain the central (crisp), left, and right values of the fuzzy velocity profile. The study's findings and the fuzzy velocity profile exhibit the highest flow rate when compared to the crisp velocity profile at its midpoint. Material, curvature, and magnetic field parameters determine the velocity field of the reaction in ternary hybrid nanofluid (TiO<sub>2</sub>+ <em>Au</em> +Ag)/Blood), hybrid nanofluid (TiO<sub>2</sub>+ <em>Au</em> /Blood), and nanofluid (TiO<sub>2</sub>/Blood). The curvature parameter and magnetic field parameter influence the heat conduction of the reaction in thnf, hnf, and nanofluid. The Schmidt number and homogeneous-heterogeneous reaction parameter determine the concentration profile of the reaction in thnf, hnf, and nanofluid. Tables and graphs present the evaluation results for velocity, temperature, concentration, the coefficient of skin friction, the local Sherwood number, and the local Nusselt number.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101354"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A modified variant of Buongiorno's model was used to analyze the transfer of a ternary hybrid nanofluid (thnf) across a stretched cylinder using the Sisko fluid model. The effect of homogeneous-heterogeneous reactions on the chemical process for the nanoparticle concentration is considered. The dispersion has resulted in the formation of a ternary hybrid nanofluid consisting of titanium dioxide (TiO2), gold (Au), and silver (Ag) nanocomposites in a base fluid (blood). A system of partial differential equations (PDEs) determines the fluid flow, considering the impact of a heat source, magnetic induction, and natural convection. The process involves using substitutions for similarity variables to convert them into a collection of non-dimensional ordinary differential equations (ODEs). This analysis specifically examines the no-slip assumption, which results in a nonlinear Dirichlet boundary condition for axial velocity. A triangular fuzzy number (TFNs) with the range [0, 0.5, 1.0] is used to analyze the unknown volume of ternary hybrid nanoparticles consisting of TiO2, Au, and Ag. The triangular membership function (TMF) is utilized to analyze the variability of uncertainty, while the α− cut is responsible for controlling the TFNs. Analysis of fuzzy linear regression analysis utilizes triangular fuzzy numbers (TFNs) to ascertain the central (crisp), left, and right values of the fuzzy velocity profile. The study's findings and the fuzzy velocity profile exhibit the highest flow rate when compared to the crisp velocity profile at its midpoint. Material, curvature, and magnetic field parameters determine the velocity field of the reaction in ternary hybrid nanofluid (TiO2+ Au +Ag)/Blood), hybrid nanofluid (TiO2+ Au /Blood), and nanofluid (TiO2/Blood). The curvature parameter and magnetic field parameter influence the heat conduction of the reaction in thnf, hnf, and nanofluid. The Schmidt number and homogeneous-heterogeneous reaction parameter determine the concentration profile of the reaction in thnf, hnf, and nanofluid. Tables and graphs present the evaluation results for velocity, temperature, concentration, the coefficient of skin friction, the local Sherwood number, and the local Nusselt number.
对Buongiorno模型进行了改进,利用Sisko流体模型分析了三元混合纳米流体(thnf)在拉伸圆柱体上的转移。考虑了均相-非均相反应对纳米颗粒浓度的影响。分散导致在基础流体(血液)中形成由二氧化钛(TiO2)、金(Au)和银(Ag)纳米复合材料组成的三元杂化纳米流体。考虑到热源、磁感应和自然对流的影响,偏微分方程(PDEs)系统决定了流体的流动。该过程涉及到对相似变量进行替换,将其转换为一组无量纲常微分方程(ode)。本分析特别检验了无滑移假设,该假设导致轴向速度的非线性狄利克雷边界条件。采用范围为[0,0.5,1.0]的三角模糊数(TFNs)来分析由TiO2、Au和Ag组成的三元杂化纳米颗粒的未知体积。三角隶属函数(TMF)用于分析不确定性的可变性,而α - cut负责控制tfn。模糊线性回归分析利用三角模糊数(tfn)来确定模糊速度剖面的中心(脆),左和右值。研究结果和模糊速度剖面在其中点与清晰速度剖面相比显示出最高的流速。材料、曲率和磁场参数决定了三元复合纳米流体(TiO2+ Au +Ag)/Blood、复合纳米流体(TiO2+ Au /Blood)和纳米流体(TiO2/Blood)中反应的速度场。曲率参数和磁场参数影响纳米流体、纳米流体和纳米流体中反应的热传导。Schmidt数和均相-非均相反应参数决定了反应在thnf、hnf和纳米流体中的浓度分布。表格和图表给出了速度、温度、浓度、表面摩擦系数、局部Sherwood数和局部Nusselt数的评价结果。