{"title":"Soil health assessment of dressing and smelting slag field based on heavy metal pollution-buffer-fertility three aspects","authors":"Min Fan, Huili Liang","doi":"10.1016/j.jhazmat.2024.136602","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136602","url":null,"abstract":"The soil health of heavy metals in dressing and smelting slag field varies soil physicochemical properties. This study proposed a new soil health index based on heavy metal pollution-buffer-fertility for dressing and smelting slag field. Consequently, spatial distribution of soil physicochemical properties and heavy metals were varied, and correlated to each other. Soil buffer function and fertility played a much more important role in soil health in the dressing and smelting slag field located in Gejiu city, which can result in that soil health indexes were higher than those in Huili county, although the soil heavy metal pollution in the former was severer than that in the latter. Maximum values of soil health indexes for dressing and smelting slag field in Gejiu city were 3.84, 0.61, and 1.75 corresponding to additive, multiplicative, and maximum value composite methods, which were higher than those in Huili county with 2.25, 0.61, and 0.17. The former’s high value is concentrated in southeastern regions and low value in some western areas, the latter’s high value occurred in southeastern districts and low value in northwestern places. So this study unveils a novel perspective on the soil health consequences associated with soil heavy metal pollution-buffer-fertility three aspects.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"14 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unique Hemispherical Coordination-Drivened Pesticide Residue Probes: Enhanced Stability in Linear Recognition for Trifluralin","authors":"Meifen Huang, Liang Jiao, Xiangying Li, Qiong Xu, Zhehui Weng, Qiong Wu, Haijun Pang","doi":"10.1016/j.jhazmat.2024.136608","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136608","url":null,"abstract":"Trifluralin (TRL) is an effective and persistent herbicide, but its extensive and prolonged use has increasingly posed ecological and environmental health risks, making the development of convenient and rapid TRL detection methods essential for environmental protection and food safety. In the present research, a novel fluorescent probe was designed and developed, Zn-χ-L, for the rapid and selective detection of TRL in complex environments. The sensor demonstrates excellent sensitivity and stability, while also exhibiting significant resistance to interference from other pesticides and metal ions. Moreover, Zn-χ-L exhibited stable performance across various solvents and showed resistance to interference from other pesticides and metal ions. Molecular docking and theoretical calculations indicate that the unique recognition of TRL molecules by Zn-χ-L is related to its specific hemispheric structural feature, which forms strong coordination interactions between Zn-χ-L and TRL through coordination bonds, π-π stacking, and halogen bonds. This special conformation not only enables the formation of coordination bonds but also establishes multiple π-π stacking and halogen bonding interactions between Zn-χ-L and TRL, leading to efficient charge transfer and exceptional probe performance.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"252 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultra-sensitive detection of norovirus using a three-in-one CRISPR platform based on a DNA hydrogel and composite functional nanomaterials","authors":"Weiya Wang, Jiadi Sun, Yifei Gao, Xue xia Jia, Yongli Ye, Shuyue Ren, Yuan Peng, Dianpeng Han, Huanying Zhou, Zhixian Gao, Xiulan Sun","doi":"10.1016/j.jhazmat.2024.136523","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136523","url":null,"abstract":"The ultrasensitive sensor with three optical response mechanisms was proposed for the determination of trace amounts of norovirus using a 3-in-1 GCSNAs (a gap-containing spherical nucleic acid nanoparticles) probe. A simple and highly sensitive three-mode biosensor with Raman, colorimetric, and fluorescence functions was proposed and implemented using the GCSNAs probe and a DNA hydrogel for norovirus detection. When the virus exists, the trans-cleavage activity of CRISPR-Cas12a was activated by double-stranded dsDNA (dsDNA) generated by reverse transcription and recombinase polymerase isothermal amplification (RT-RPA) to degrade the DNA hydrogel/GCSNA composition and release the three-in-one (3-in-1) probe-GCSNA, realising the triple ultrasensitive detection of norovirus. The colorimetric sensing mode allows for semi-quantitative on-site detection, which is visible to the naked eye and the quantitative detection can be achieved by conducting grayscale analysis using the \"Colour Grab\" function of a smartphone. This new triple sensor achieved the successful quantification of norovirus at concentrations as low as the femtomolar scale with an excellent selectivity and accuracy. Considering the colorimetric properties of rolling circle amplification (RCA)-based DNA hydrogels and GCSNAs, the proposed method has a broad application prospect in virus on-site detection in food. It should be applicable for virus detection in a wide range of fields such, as environmental analysis, medical diagnosis, and food safety. It is anticipated that this mechanism will open new avenues for the development of multimodal analyses and multifunctional sensing platforms for various applications. We anticipate that this sensing mechanism will open up a new way for the development of food safety detection.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"54 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation","authors":"Haoran Song, Wen-Juan Chen, Shao-Fang Chen, Mingqiu Liu, Guiling Si, Xixian Zhu, Kalpana Bhatt, Sandhya Mishra, Mohamed A. Ghorab, Shaohua Chen","doi":"10.1016/j.jhazmat.2024.136570","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136570","url":null,"abstract":"Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a new strain of <em>Pseudomonas nitroreducens</em> W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50% of chlorpyrifos (25<!-- --> <!-- -->mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44%) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence “HxHxDH”, were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"229 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingyan Sun, Haifeng Xu, Tan Li, Wenjie Guan, Kaige Wang
{"title":"Hydrogen-free upcycling of polyethylene waste to methylated aromatics over Ni/ZSM-5 under mild conditions","authors":"Bingyan Sun, Haifeng Xu, Tan Li, Wenjie Guan, Kaige Wang","doi":"10.1016/j.jhazmat.2024.136564","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136564","url":null,"abstract":"Upcycling waste plastic into aromatics presents an attractive strategy to tackle both plastic pollution and energy challenges. However, previous studies often rely on high temperatures, precious metals, and have broad product distributions. In this study, we reported that a Ni/ZSM-5 bifunctional catalyst can directly convert polyethylene (PE) into methylated aromatics with high selectivity under mild conditions, while eliminating the requirement for hydrogen gas and solvents. The liquid yield could attain up to 70.3%, and the aromatics yield could achieve up to 51.7%. Over 78.4% of the aromatics were methylated aromatics including toluene, xylene, and mesitylene. Polymer chains underwent dehydrogenation over Ni and the acid sites in ZSM-5, forming C=C bonds. Certain of these bonds evolved into carbenium ions through the process of proton transfer at the acid sites. The optimization of Ni and acid sites enhanced the oligomerization, cyclization, and aromatization process. The extra mesopores created by Ni on the molecular sieve aid in the generation of aromatics. Furthermore, the Ni/ZSM-5 catalyst demonstrated the ability to convert typical commercial grades of PE plastic, such as gloves and bottles, into aromatics with a selectivity of up to 61.1%. It offers an economically feasible and environmentally friendly upcycling avenue for the circular economy of plastics.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"6 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantifying the environmental fate and source of nitrate contamination using dual-isotope tracing coupled with nitrogen cascade model on the basin scale","authors":"Zihan Zhao, Xinghua He, Sidi Chen, Letian Ning, Kexin Chen, Yanhua Wang","doi":"10.1016/j.jhazmat.2024.136594","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136594","url":null,"abstract":"Nitrate (NO<sub>3</sub><sup>−</sup>) contamination in riverine networks has threatened the environment and human health. Clarifying the NO<sub>3</sub><sup>−</sup> source and environmental fate within the basin under different underlying surfaces is essential for water body protection, especially China's two mother rivers. A series of combination methods were established i.e., field survey, index measurements, isotope-tracing techniques, and material flow analysis in four typical basins to investigate the spatiotemporal variation and source of NO<sub>3</sub><sup>−</sup> pollution and nitrogen cascade characteristics. The dual-isotope coupled with MixSIAR model revealed that manure and sewage were the major NO<sub>3</sub><sup>−</sup> source in the irrigation basin (WY, 76.7%), hilly mountainous basin (YC, 52.3%), and plateau lake basin (DC, 48.7%). However, for the plain-river network basin (CZ), soil leachate was the main source (55.5%). In terms of the N losses to water within agri-environment system, livestock-breeding system in three basins made the biggest contribution among the systems, WY (77.3%), YC (47.3%), and DC (41.8%). While in CZ, about 34.4% of N was delivered from the crop-production system. The N cascade model verified the results of isotope-tracing techniques for each basin. The study provides new insight into NO<sub>3</sub><sup>−</sup>-tracing combining hydrogeochemical indicators, isotopic-tracing techniques, and material flow analysis and guides strategies for mitigating the negative impacts of NO<sub>3</sub><sup>−</sup> pollution on aquatic environments on basin scale.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"23 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana.E. Pradas del Real, Delphine Vantelon, Charlotte Catrouillet, Imane Khatib, Rémi Tucoulou, Camille Rivard, Sebastian Schoeder, Julien. Gigault, Mélanie. Davranche
{"title":"Plastic debris accumulated on Sargassum algae stranded biomass are vectors for different As(V) and As(III) forms","authors":"Ana.E. Pradas del Real, Delphine Vantelon, Charlotte Catrouillet, Imane Khatib, Rémi Tucoulou, Camille Rivard, Sebastian Schoeder, Julien. Gigault, Mélanie. Davranche","doi":"10.1016/j.jhazmat.2024.136579","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136579","url":null,"abstract":"This work shows that the plastic debris accumulated along with stranded Sargassum biomass in Guadeloupe’s beaches contains different forms of arsenic. Results from synchrotron nano X-ray Fluorescence (nanoXRF) and nano X-ray Absorption Near Edge Structure (nanoXANES) show that arsenate (As(V) in a tetrahedral coordination) present in seawater is complexed in the algae cell walls in an octahedral As(V) form, which is subsequently reduced to As(III) within the algae. Inorganic As(III) is either excreted or may undergo methylation and/or binding to glutathione, which is then stored in the algal cells or excreted. The areas where As is colocalized with a variety of metals (Si, K, Ca, Fe, Ni Cu and Zn) may correspond with areas in which algae tissues remain adhered to the surface of the plastics. On the opposite, the areas in which As is found together with Ti or Cl may correspond with areas in which the algae has been decomposed or in which As has been adsorbed after being secreted by the algae. Results from this study should be taken into account to assess the ecotoxicological impacts of Sargassum biomass accumulated on beaches, as well as for the planning of its valorization. Plastics within the Sargassum biomass can act as vectors for arsenic, facilitating its transfer to other environmental compartments where the biomass is used or when it is ingested by various organisms. In a context of a growing problem of plastic pollution and a more and more frequent algae blooms, these results are particularly relevant.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"3 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun-dan Gan, Yu-liang Liao, Heng-bo Liu, Jin-yan Yang, Aleksander Nikitin
{"title":"Microplastic-induced changes in Cd and Cr behavior in the agricultural soil-wheat system: Insights into metal bioavailability and phytotoxicity","authors":"Chun-dan Gan, Yu-liang Liao, Heng-bo Liu, Jin-yan Yang, Aleksander Nikitin","doi":"10.1016/j.jhazmat.2024.136592","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136592","url":null,"abstract":"Microplastics (MPs) and heavy metals widely coexist in agricultural soils, posing significant risks to soil-plant ecosystems. This study explores the effects of five common MPs—polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA)—and environmental-simulating microplastics (EMPs), composed based on the composition of local MPs in agricultural soils, on the bioavailability and phytotoxicity of Cd and Cr in soils. Pot experiments demonstrated that MPs, particularly PE and EMPs at a 5% dosage, markedly decreased soil pH, water-holding capacity, and soil organic carbon content. This decrease in pH led to enhanced Cd and Cr mobility and bioavailability, especially with PE and EMPs increasing Cr bioavailability in 15<!-- --> <!-- -->cm depth soil by up to 43.9% and 37.8%, respectively. In soils with 2.1<!-- --> <!-- -->mg/kg of Cd and 390<!-- --> <!-- -->mg/kg of Cr, both 1% and 5% doses of MPs inhibited wheat growth while enhancing the uptake and translocation of Cd and Cr in wheat. Notably, PE, PS, PLA, and EMPs exposure significantly elevated levels of oxidative stress markers (SOD, POD, CAT, and MDA) in wheat. These findings highlight the importance of further research on the combined impacts of MPs and heavy metals on soil health and plant safety.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"57 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning models with innovative outlier detection techniques for predicting heavy metal contamination in soils","authors":"Ram Proshad, S.M. Asharaful Abedin Asha, Ron Tan, Yineng Lu, Md Anwarul Abedin, Zihao Ding, Shuangting Zhang, Ziyi Li, Geng Chen, Zhuanjun Zhao","doi":"10.1016/j.jhazmat.2024.136536","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136536","url":null,"abstract":"Machine learning (ML) models for accurately predicting heavy metals with inconsistent outputs have improved owing to dataset outliers, which influence model reliability and accuracy. A comprehensive technique that combines machine learning and advanced statistical methods was applied to assess data outlier’s effects on ML models. Ten ML models with three outlier detection methods predicted Cr, Ni, Cd, and Pb in Narayanganj soils. XGBoost with density-based spatial clustering of applications with noise (DBSCAN) improved model efficacy (R<sup>2</sup>). The R2 of Cr, Ni, Cd, and Pb was considerably enhanced by 11.11%, 6.33%, 14.47%, and 5.68%, respectively, indicating that outliers affected the model's HM prediction. Soil factors affected Cr (80%), Ni (72.61%), Cd (53.35%), and Pb (63.47%) concentrations based on feature importance. Contamination factor prediction showed considerable contamination for Cr, Ni, and Cd. LISA revealed Cd (55.4%), Cr (49.3%), and Pb (47.3%) as the significant pollutant (p < 0.05). Moran's I index values for Cr, Ni, Cd, and Pb were 0.65, 0.58, 0.60, and 0.66, respectively, indicating strong positive spatial autocorrelation and clusters with similar contamination. Finally, this work successfully assessed the influence of data outliers on the ML model for soil HM contamination prediction, identifying crucial regions that require rapid conservation measures.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"37 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuxian Li, Maxime Enrico, Kevin Bishop, Stephen J. Roberts, Dominic A. Hodgson, Mariusz Lamentowicz, Dmitri Mauquoy, Adrien Mestrot, Martin Grosjean
{"title":"Perspectives on using peat records to reconstruct past atmospheric Hg levels","authors":"Chuxian Li, Maxime Enrico, Kevin Bishop, Stephen J. Roberts, Dominic A. Hodgson, Mariusz Lamentowicz, Dmitri Mauquoy, Adrien Mestrot, Martin Grosjean","doi":"10.1016/j.jhazmat.2024.136581","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136581","url":null,"abstract":"Anthropogenic mercury (Hg) emissions to the atmosphere have increased the concentration of this potent neurotoxin in terrestrial and aquatic ecosystems. The magnitude of regional variation in atmospheric Hg pollution levels raises questions about the interactions between natural processes and human activities at local and regional scales that are shaping global atmospheric Hg cycling. Peatlands are potentially valuable and widespread records of past atmospheric Hg levels that could help address these questions. This perspective aims to improve the utility of peatlands as authentic Hg archives by summarizing the processes that could affect Hg cycling in peatlands. We identify the overlooked role of peat vegetation species and their primary productivity in Hg sequestration under climatic and anthropogenic activities. We provide recommendations to improve the reliability of using peat cores to reconstruct the atmospheric Hg levels from past decades to millennia. Better information from peatland archives on regional variation in atmospheric Hg levels will be of value for testing hypotheses about the processes controlling global Hg cycling. This information can also contribute to evaluating how well international efforts under the UNEP Minamata Convention are succeeding in reducing atmospheric Hg levels and deposition in different regions.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"13 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}