Physics Open最新文献

筛选
英文 中文
Phase stability and physical properties of XSnPt(X = Ti, Zr, Hf): A density functional theory study XSnPt(X = Ti, Zr, Hf)的相稳定性和物理性质:密度泛函理论研究
IF 1.4
Physics Open Pub Date : 2025-08-14 DOI: 10.1016/j.physo.2025.100301
Ibrahim Omer A. Ali , B.O. Mnisi , E.M. Benecha , M.M. Tibane
{"title":"Phase stability and physical properties of XSnPt(X = Ti, Zr, Hf): A density functional theory study","authors":"Ibrahim Omer A. Ali ,&nbsp;B.O. Mnisi ,&nbsp;E.M. Benecha ,&nbsp;M.M. Tibane","doi":"10.1016/j.physo.2025.100301","DOIUrl":"10.1016/j.physo.2025.100301","url":null,"abstract":"<div><div>Based on the density functional theory (DFT) with the GGA functional, we investigated the structural, electronic, mechanical, phonon, and thermal properties of TiSnPt, ZrSnPt, and HfSnPt half-Heusler alloys using VASP and CASTEP codes. The negative heat of formation and cohesive energy values confirm the thermodynamic stability of all three alloys, suggesting their plausible experimental synthesis. Band structure calculations using GGA, GGA+SOC, and HSE06 show semiconducting behavior with indirect band gaps; SOC reduces the band gap, while HSE06 increases it. Mechanical and phonon dispersion results confirm the alloys’ mechanical and dynamical stability. The bulk-to-shear ratios and high melting points (<span><math><mo>&gt;</mo></math></span>1000 K) indicate good ductility. Room-temperature lattice thermal conductivities k<span><math><msub><mrow></mrow><mrow><mi>l</mi></mrow></msub></math></span> are 15.3, 16.7, and 16.4 W/m K for TiSnPt, ZrSnPt, and HfSnPt, respectively, with nearly isotropic phonon transport. The k<span><math><msub><mrow></mrow><mrow><mi>l</mi></mrow></msub></math></span> decreases with temperature due to enhanced Umklapp scattering, reaching <span><math><mo>≈</mo></math></span>4.5–5.0 W/m K at 1000 K. These results highlight the alloys’ potential for high-temperature structural and thermoelectric applications.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100301"},"PeriodicalIF":1.4,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144852509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring mechanical performance in Al-Pt binary alloys through molecular dynamics simulations 通过分子动力学模拟研究Al-Pt二元合金的力学性能
IF 1.4
Physics Open Pub Date : 2025-08-09 DOI: 10.1016/j.physo.2025.100310
Md. Bokhtiar Hossen , Hyung Sub Sim , Chang-Min Yoon , Joo Hyun Moon , Sungwook Leo Hong
{"title":"Exploring mechanical performance in Al-Pt binary alloys through molecular dynamics simulations","authors":"Md. Bokhtiar Hossen ,&nbsp;Hyung Sub Sim ,&nbsp;Chang-Min Yoon ,&nbsp;Joo Hyun Moon ,&nbsp;Sungwook Leo Hong","doi":"10.1016/j.physo.2025.100310","DOIUrl":"10.1016/j.physo.2025.100310","url":null,"abstract":"<div><div>This study systematically explores the impact of environmental factors on the mechanical properties of an Al-Pt binary alloy using molecular dynamics simulations. By varying Pt content and examining key conditions such as temperature, strain rate, and vacancy defects, we delve into their combined effects on the alloy's fracture behavior and overall mechanical performance. Our simulations demonstrate that increasing strain rates enhance fracture strength, while higher temperatures and vacancy concentrations notably reduce it. In contrast, the elastic modulus remained relatively insensitive to these environmental changes. Furthermore, our study highlights the crucial role of point vacancies in accelerating fracture initiation, providing new insights into the failure mechanisms of Al-Pt alloys. These findings have significant implications for the design and optimization of high-performance alloy materials, particularly for applications requiring resilience under extreme operational conditions. The detailed analysis of fracture strength across various environmental scenarios offers a pathway to developing alloys with improved durability and mechanical integrity.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100310"},"PeriodicalIF":1.4,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of structural, electrical, and magnetic anisotropy studies of the rare earth (Tb3+) ion substituted Mg-Ni nanocrystalline ferrites for spintronic applications 自旋电子应用中稀土(Tb3+)离子取代Mg-Ni纳米晶铁氧体的结构、电学和磁各向异性研究
IF 1.4
Physics Open Pub Date : 2025-08-08 DOI: 10.1016/j.physo.2025.100308
Jettiboyina Anjaneyulu , K.V. Ramesh , D. Venkatesh , Bimaleswar Sahu
{"title":"Investigation of structural, electrical, and magnetic anisotropy studies of the rare earth (Tb3+) ion substituted Mg-Ni nanocrystalline ferrites for spintronic applications","authors":"Jettiboyina Anjaneyulu ,&nbsp;K.V. Ramesh ,&nbsp;D. Venkatesh ,&nbsp;Bimaleswar Sahu","doi":"10.1016/j.physo.2025.100308","DOIUrl":"10.1016/j.physo.2025.100308","url":null,"abstract":"<div><div>Tb<sup>3+</sup> ion-doped Mg-Ni nanocrystalline ferrites with the chemical formula Mg<sub>0.2</sub>Ni<sub>0.8</sub>Tb<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> (x = 0.00 to 0.25) were synthesized using the sol-gel auto-combustion method. The structural properties of all samples were analyzed using X-ray diffraction, FTIR, and UV–visible spectroscopy. XRD studies confirmed the existence of a secondary phase in samples with x = 0.15 to higher concentrations. The lattice constant decreased, and the X-ray density increased with increasing Tb<sup>3+</sup> ions. The two prominent absorption bands observed in the FTIR spectra confirmed the spinel structure. The direct band gap obtained from the UV–vis investigation was in the range of 1.85–1.67 eV, confirming semiconducting behavior. The grain size calculated using FESEM increased with increasing Tb<sup>3+</sup> concentration. DC electrical conductivity measurements also indicated the semiconducting characteristics of the samples. Magnetic measurements were performed using VSM. The addition of Tb<sup>3+</sup> ions resulted in a decrease in the saturation magnetization from 29.32 (x = 0.00) to 8.61 (x = 0.25) emu/g. In addition, the anisotropy constant and anisotropy field decreased with increasing Tb<sup>3+</sup> ion content because of secondary phase formation. Tunable magnetic softening, semiconducting nature, and anisotropy control are essential for tailoring materials for spintronic applications.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100308"},"PeriodicalIF":1.4,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual radiation characterisation of borosilicate glass slides: Thermoluminescence response to neutrons and optical properties under gamma irradiation 硼硅酸盐玻璃载玻片的双辐射特性:在伽马辐射下对中子的热释光响应和光学性质
IF 1.4
Physics Open Pub Date : 2025-08-08 DOI: 10.1016/j.physo.2025.100309
S.F. Abdul Sani , A.A.Z. Ahmad Nazeri , Muhammad Fahmi Mohd Zainal , K.S. Almugren , Siti Norbaini Sabtu , D.A. Bradley
{"title":"Dual radiation characterisation of borosilicate glass slides: Thermoluminescence response to neutrons and optical properties under gamma irradiation","authors":"S.F. Abdul Sani ,&nbsp;A.A.Z. Ahmad Nazeri ,&nbsp;Muhammad Fahmi Mohd Zainal ,&nbsp;K.S. Almugren ,&nbsp;Siti Norbaini Sabtu ,&nbsp;D.A. Bradley","doi":"10.1016/j.physo.2025.100309","DOIUrl":"10.1016/j.physo.2025.100309","url":null,"abstract":"<div><div>This study comprehensively explores the dual radiation response and promising dosimetric potential of commercially available borosilicate microscope glass slides. We evaluate their thermoluminescence (TL) response to neutron irradiation and investigate their structural modifications under gamma exposure. TL properties, including glow curve characteristics, dose response, and sensitivity, were assessed for neutron-irradiated glass slides from two different brands. Concurrently, structural and defect evolution in gamma-irradiated slides was analyzed using Raman, Fourier Transform Infrared (FTIR), Photoluminescence (PL), and X-ray Diffraction (XRD) techniques. The TL analysis of neutron-irradiated slides revealed a distinct glow peak (primarily 230–250 °C), a measurable dose-dependent response, and increasing TL intensity with neutron dose up to 6 Gy, demonstrating a quantifiable response suitable for further exploration in neutron dosimetry. However, variations in sensitivity and non-linearity were observed at higher doses, indicating the complex nature of trap interactions in this amorphous material. Optical spectroscopy provided complementary insights into gamma-induced effects: FTIR confirmed bond rearrangements and changes in Qn species, Raman spectroscopy detected vibrational shifts linked to network distortions, PL revealed defect-induced emissions (e.g., at 454, 595, 900, and 1078 nm), and XRD confirmed the retention of an amorphous structure with no detectable long-range structural modifications, though minor intensity variations were observed. These findings establish borosilicate glass slides as a cost-effective, reusable, and widely accessible material with promising potential for passive radiation monitoring. While this manuscript focuses on neutron TL and gamma-induced optical changes, the broader dosimetric capabilities of this material, including its TL response to photon irradiation, have been detailed in our earlier work. This dual characterization approach enhances the fundamental understanding of radiation-induced modifications in glass, suggesting potential applications in medical dosimetry, industrial radiation monitoring, and space radiation shielding, with further optimization required for enhanced performance and linearity.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100309"},"PeriodicalIF":1.4,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144852511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy-induced chaos in magnetized plasma: Insights from nonlinear dynamics 磁化等离子体的熵致混沌:非线性动力学的见解
IF 1.4
Physics Open Pub Date : 2025-08-05 DOI: 10.1016/j.physo.2025.100300
M. Faizan , Muhammad Waqar Ahmed , M. Yaqub Khan , M. Ijaz Khan
{"title":"Entropy-induced chaos in magnetized plasma: Insights from nonlinear dynamics","authors":"M. Faizan ,&nbsp;Muhammad Waqar Ahmed ,&nbsp;M. Yaqub Khan ,&nbsp;M. Ijaz Khan","doi":"10.1016/j.physo.2025.100300","DOIUrl":"10.1016/j.physo.2025.100300","url":null,"abstract":"<div><div>This research introduces a novel theoretical investigation into the fundamental influence of entropy on plasma dynamics, particularly its role in governing confinement and transport phenomena within magnetically confined thermonuclear fusion systems. Utilizing Braginskii's transport formalism alongside a drift approximation to incorporate entropy-driven effects, a new class of nonlinear evolution equations is derived. These equations expose previously unrecognized couplings between entropy variations and ion temperature gradient (ITG) modes. A thorough examination of the linear dispersion relation elucidates key features of wave propagation, while nonlinear analysis reveals entropy-induced transitions to chaotic behavior, reminiscent of the Lorenz-Stenflo model, a well-known representation of turbulence in plasma. This study redefines entropy as an active agent in the emergence of instability and turbulence, rather than merely a passive thermodynamic variable. The findings offer critical insights into enhancing plasma confinement and stability, potentially advancing the realization of efficient and sustainable nuclear fusion.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100300"},"PeriodicalIF":1.4,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbits of one-dimensional cellular automata induced by symmetry transformations 由对称变换引起的一维元胞自动机的轨道
IF 1.4
Physics Open Pub Date : 2025-08-01 DOI: 10.1016/j.physo.2025.100298
Martin Schaller , Karl Svozil
{"title":"Orbits of one-dimensional cellular automata induced by symmetry transformations","authors":"Martin Schaller ,&nbsp;Karl Svozil","doi":"10.1016/j.physo.2025.100298","DOIUrl":"10.1016/j.physo.2025.100298","url":null,"abstract":"<div><div>Using a group-theoretic approach, a method for determining the equivalence classes (also called orbits) of the set of rules of one-dimensional cellular automata induced by the symmetry operations of reflection and permutation and their product is presented. Orbits are classified by their isomorphism type. Results for the number of orbits and the number of orbits by type for state sets of size two and three are included.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100298"},"PeriodicalIF":1.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144779819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special solutions of coupled classical harmonic oscillators with the addition of magnetic monopoles 加入磁单极子的耦合经典谐振子的特殊解
IF 1.4
Physics Open Pub Date : 2025-07-31 DOI: 10.1016/j.physo.2025.100297
Charlotte Rundberget
{"title":"Special solutions of coupled classical harmonic oscillators with the addition of magnetic monopoles","authors":"Charlotte Rundberget","doi":"10.1016/j.physo.2025.100297","DOIUrl":"10.1016/j.physo.2025.100297","url":null,"abstract":"<div><div>In this paper, we undertake a thorough investigation into the existence of magnetic monopoles, elusive particles theorized to possess isolated north or south magnetic poles. These hypothetical entities have long captured the imagination of physicists and have been the subject of extensive research. Our analysis, rooted in the principles of classical mechanics and electrodynamics provides a unique look into the fundamental nature of these hypothetical monopoles.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100297"},"PeriodicalIF":1.4,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144779747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade studied by the Jaynes–Cummings Model 用jines - cummings模型研究了两个原子之间的Rydberg阻滞相互作用的拉比振荡和纠缠
IF 1.4
Physics Open Pub Date : 2025-07-24 DOI: 10.1016/j.physo.2025.100292
Francisco D. Santillan, Andreas Hanke
{"title":"Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade studied by the Jaynes–Cummings Model","authors":"Francisco D. Santillan,&nbsp;Andreas Hanke","doi":"10.1016/j.physo.2025.100292","DOIUrl":"10.1016/j.physo.2025.100292","url":null,"abstract":"<div><div>The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance (<span><math><mrow><mo>&lt;</mo><mn>10</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes–Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We consider both number (Fock) states of the field and single-mode quantum coherent states. In particular, we discuss different types of entanglements between various components of the total system consisting of the two Rydberg-interacting atoms and coherent states of the field, and show that the behavior is significantly different compared to a system with non-interacting atoms corresponding to the two-atom Tavis-Cummings model. Our results are relevant in view of atom-light quantum interfaces as components for future long-distance quantum communication.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100292"},"PeriodicalIF":1.4,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144720997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-principles calculations to investigate electronic, optical and thermo-elastic features of monoclinic AgCuO2 alloy 用第一性原理计算研究单斜AgCuO2合金的电子、光学和热弹性特性
Physics Open Pub Date : 2025-07-23 DOI: 10.1016/j.physo.2025.100299
Md. Alomgir Hossain , M.N.H. Liton , M.S.I. Sarker , M.M. Rahman , M.K.R. Khan
{"title":"First-principles calculations to investigate electronic, optical and thermo-elastic features of monoclinic AgCuO2 alloy","authors":"Md. Alomgir Hossain ,&nbsp;M.N.H. Liton ,&nbsp;M.S.I. Sarker ,&nbsp;M.M. Rahman ,&nbsp;M.K.R. Khan","doi":"10.1016/j.physo.2025.100299","DOIUrl":"10.1016/j.physo.2025.100299","url":null,"abstract":"<div><div>Structural, electronic, mechanical and optical properties of AgCuO<sub>2</sub> have been unveiled through first principles calculations based on density functional theory (DFT) via CASTEP code. The evaluated lattice parameters agree with the previous theoretical and experimental observations for the monoclinic structure of AgCuO<sub>2</sub>. The electronic band structure and density of states (DOS) analysis at the Fermi level confirms the metallic behavior of AgCuO<sub>2</sub>. Besides, the partial density of states (PDOS) reveals that Cu-3d and O-2p orbitals are primarily responsible for the formation of metallic bands. Various optical properties have been calculated along different polarization directions, and the obtained results re-confirmed the metallic nature of AgCuO<sub>2</sub>. All the optical spectra exhibit anisotropic behavior, indicating potential applications in direction-dependent optical devices. The high reflectivity in the infrared and visible regions suggests that AgCuO<sub>2</sub> can be potentially used in optical mirrors and thermal barrier coatings. Analysis of additional optical parameters indicates that AgCuO<sub>2</sub> could be a promising candidate for optoelectronic devices. The calculated elastic tensor satisfies the stability criteria, confirming the stability of the monoclinic structure. The estimated elastic parameters suggest that AgCuO<sub>2</sub> is soft, ductile and anisotropic. A mixed bonding character with dominating ionic contribution in the crystal system is established from elastic constant and Mulliken bond analysis. The calculated lower value of Debye temperature specifies that AgCuO<sub>2</sub> is a soft material with lower lattice thermal conductivity. The weaker interatomic bonding properties due to lower Debye temperature, low melting temperature and minimum thermal conductivity make it a possible candidate for TCB material.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100299"},"PeriodicalIF":0.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size and liquid-substrate interfacial energy effects on melting temperature and band gap in CdSe Nanoparticles: A comparative study of cylindrical and spherical geometries 尺寸和液体-衬底界面能对CdSe纳米颗粒熔化温度和带隙的影响:圆柱形和球形几何形状的比较研究
Physics Open Pub Date : 2025-07-17 DOI: 10.1016/j.physo.2025.100295
Gebru Tesfaye Sherka, Habte Dulla Berry
{"title":"Size and liquid-substrate interfacial energy effects on melting temperature and band gap in CdSe Nanoparticles: A comparative study of cylindrical and spherical geometries","authors":"Gebru Tesfaye Sherka,&nbsp;Habte Dulla Berry","doi":"10.1016/j.physo.2025.100295","DOIUrl":"10.1016/j.physo.2025.100295","url":null,"abstract":"<div><div>This paper presents a theoretical comparison examining the effects of nanoparticle size and liquid-substrate interfacial energy on the melting temperature and band gap of cadmium selenide (CdSe) nanoparticles supported on a glass substrate, analyzing both cylindrical and spherical shapes. Using a simple thermodynamic model, this study investigates the influence of nanoparticle size and liquid-substrate interfacial energy on the melting temperature and band gap of supported CdSe nanoparticles with cylindrical and spherical geometries. The model incorporates surface and interfacial energies and wetting parameters to derive analytical expressions for the variations in melting temperature and band gap as functions of nanoparticle size and substrate interaction for both shapes. Results show that the melting temperature decreases with decreasing particle size. In contrast, the band gap increases, but the extent of this dependence varies between cylindrical and spherical geometries, which means nanoparticles with higher surface curvatures (cylindrical shape) exhibit lower melting temperatures than nanoparticles with lower surface curvatures (spherical shape). Furthermore, stronger liquid-substrate interfacial interactions lead to greater melting point depression, while weaker interactions stabilize the nanoparticles, resulting in higher melting temperatures in both geometries. The band gap shows a strong quantum confinement effect in smaller nanoparticles, while their geometry and substrate interactions further influence this trend. The study compares theoretical predictions with existing experimental data and models for unsupported nanoparticles, emphasizing how interfacial energy and shape critically affect the thermal and optical characteristics of CdSe nanomaterials. These findings provide valuable guidance for enhancing the performance and durability of CdSe-based devices in photovoltaic systems, optoelectronic components, and nanosensors.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100295"},"PeriodicalIF":0.0,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144662915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信