Size and liquid-substrate interfacial energy effects on melting temperature and band gap in CdSe Nanoparticles: A comparative study of cylindrical and spherical geometries

IF 1.4 Q2 Physics and Astronomy
Gebru Tesfaye Sherka, Habte Dulla Berry
{"title":"Size and liquid-substrate interfacial energy effects on melting temperature and band gap in CdSe Nanoparticles: A comparative study of cylindrical and spherical geometries","authors":"Gebru Tesfaye Sherka,&nbsp;Habte Dulla Berry","doi":"10.1016/j.physo.2025.100295","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a theoretical comparison examining the effects of nanoparticle size and liquid-substrate interfacial energy on the melting temperature and band gap of cadmium selenide (CdSe) nanoparticles supported on a glass substrate, analyzing both cylindrical and spherical shapes. Using a simple thermodynamic model, this study investigates the influence of nanoparticle size and liquid-substrate interfacial energy on the melting temperature and band gap of supported CdSe nanoparticles with cylindrical and spherical geometries. The model incorporates surface and interfacial energies and wetting parameters to derive analytical expressions for the variations in melting temperature and band gap as functions of nanoparticle size and substrate interaction for both shapes. Results show that the melting temperature decreases with decreasing particle size. In contrast, the band gap increases, but the extent of this dependence varies between cylindrical and spherical geometries, which means nanoparticles with higher surface curvatures (cylindrical shape) exhibit lower melting temperatures than nanoparticles with lower surface curvatures (spherical shape). Furthermore, stronger liquid-substrate interfacial interactions lead to greater melting point depression, while weaker interactions stabilize the nanoparticles, resulting in higher melting temperatures in both geometries. The band gap shows a strong quantum confinement effect in smaller nanoparticles, while their geometry and substrate interactions further influence this trend. The study compares theoretical predictions with existing experimental data and models for unsupported nanoparticles, emphasizing how interfacial energy and shape critically affect the thermal and optical characteristics of CdSe nanomaterials. These findings provide valuable guidance for enhancing the performance and durability of CdSe-based devices in photovoltaic systems, optoelectronic components, and nanosensors.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100295"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a theoretical comparison examining the effects of nanoparticle size and liquid-substrate interfacial energy on the melting temperature and band gap of cadmium selenide (CdSe) nanoparticles supported on a glass substrate, analyzing both cylindrical and spherical shapes. Using a simple thermodynamic model, this study investigates the influence of nanoparticle size and liquid-substrate interfacial energy on the melting temperature and band gap of supported CdSe nanoparticles with cylindrical and spherical geometries. The model incorporates surface and interfacial energies and wetting parameters to derive analytical expressions for the variations in melting temperature and band gap as functions of nanoparticle size and substrate interaction for both shapes. Results show that the melting temperature decreases with decreasing particle size. In contrast, the band gap increases, but the extent of this dependence varies between cylindrical and spherical geometries, which means nanoparticles with higher surface curvatures (cylindrical shape) exhibit lower melting temperatures than nanoparticles with lower surface curvatures (spherical shape). Furthermore, stronger liquid-substrate interfacial interactions lead to greater melting point depression, while weaker interactions stabilize the nanoparticles, resulting in higher melting temperatures in both geometries. The band gap shows a strong quantum confinement effect in smaller nanoparticles, while their geometry and substrate interactions further influence this trend. The study compares theoretical predictions with existing experimental data and models for unsupported nanoparticles, emphasizing how interfacial energy and shape critically affect the thermal and optical characteristics of CdSe nanomaterials. These findings provide valuable guidance for enhancing the performance and durability of CdSe-based devices in photovoltaic systems, optoelectronic components, and nanosensors.
尺寸和液体-衬底界面能对CdSe纳米颗粒熔化温度和带隙的影响:圆柱形和球形几何形状的比较研究
本文从理论上比较了纳米颗粒尺寸和液基界面能对玻璃基板上硒化镉(CdSe)纳米颗粒熔化温度和带隙的影响,分析了圆柱形和球形两种形状。利用简单的热力学模型,研究了纳米颗粒尺寸和液基界面能对圆柱形和球形负载型CdSe纳米颗粒熔化温度和带隙的影响。该模型结合表面和界面能以及润湿参数,推导出两种形状的纳米颗粒尺寸和衬底相互作用对熔化温度和带隙变化的解析表达式。结果表明,熔点温度随晶粒尺寸的减小而降低。相比之下,带隙增加,但这种依赖程度在圆柱形和球形几何形状之间有所不同,这意味着具有较高表面曲率的纳米颗粒(圆柱形)比具有较低表面曲率的纳米颗粒(球形)具有更低的熔化温度。此外,更强的液体-衬底界面相互作用导致更大的熔点下降,而更弱的相互作用使纳米颗粒稳定,导致两种几何形状的更高熔化温度。带隙在较小的纳米颗粒中表现出很强的量子约束效应,而它们的几何形状和衬底相互作用进一步影响了这一趋势。该研究将理论预测与现有的无负载纳米颗粒的实验数据和模型进行了比较,强调了界面能和形状如何对CdSe纳米材料的热学和光学特性产生关键影响。这些发现为提高光电系统、光电元件和纳米传感器中基于cdse的器件的性能和耐久性提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信