{"title":"自旋电子应用中稀土(Tb3+)离子取代Mg-Ni纳米晶铁氧体的结构、电学和磁各向异性研究","authors":"Jettiboyina Anjaneyulu , K.V. Ramesh , D. Venkatesh , Bimaleswar Sahu","doi":"10.1016/j.physo.2025.100308","DOIUrl":null,"url":null,"abstract":"<div><div>Tb<sup>3+</sup> ion-doped Mg-Ni nanocrystalline ferrites with the chemical formula Mg<sub>0.2</sub>Ni<sub>0.8</sub>Tb<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> (x = 0.00 to 0.25) were synthesized using the sol-gel auto-combustion method. The structural properties of all samples were analyzed using X-ray diffraction, FTIR, and UV–visible spectroscopy. XRD studies confirmed the existence of a secondary phase in samples with x = 0.15 to higher concentrations. The lattice constant decreased, and the X-ray density increased with increasing Tb<sup>3+</sup> ions. The two prominent absorption bands observed in the FTIR spectra confirmed the spinel structure. The direct band gap obtained from the UV–vis investigation was in the range of 1.85–1.67 eV, confirming semiconducting behavior. The grain size calculated using FESEM increased with increasing Tb<sup>3+</sup> concentration. DC electrical conductivity measurements also indicated the semiconducting characteristics of the samples. Magnetic measurements were performed using VSM. The addition of Tb<sup>3+</sup> ions resulted in a decrease in the saturation magnetization from 29.32 (x = 0.00) to 8.61 (x = 0.25) emu/g. In addition, the anisotropy constant and anisotropy field decreased with increasing Tb<sup>3+</sup> ion content because of secondary phase formation. Tunable magnetic softening, semiconducting nature, and anisotropy control are essential for tailoring materials for spintronic applications.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"25 ","pages":"Article 100308"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of structural, electrical, and magnetic anisotropy studies of the rare earth (Tb3+) ion substituted Mg-Ni nanocrystalline ferrites for spintronic applications\",\"authors\":\"Jettiboyina Anjaneyulu , K.V. Ramesh , D. Venkatesh , Bimaleswar Sahu\",\"doi\":\"10.1016/j.physo.2025.100308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tb<sup>3+</sup> ion-doped Mg-Ni nanocrystalline ferrites with the chemical formula Mg<sub>0.2</sub>Ni<sub>0.8</sub>Tb<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> (x = 0.00 to 0.25) were synthesized using the sol-gel auto-combustion method. The structural properties of all samples were analyzed using X-ray diffraction, FTIR, and UV–visible spectroscopy. XRD studies confirmed the existence of a secondary phase in samples with x = 0.15 to higher concentrations. The lattice constant decreased, and the X-ray density increased with increasing Tb<sup>3+</sup> ions. The two prominent absorption bands observed in the FTIR spectra confirmed the spinel structure. The direct band gap obtained from the UV–vis investigation was in the range of 1.85–1.67 eV, confirming semiconducting behavior. The grain size calculated using FESEM increased with increasing Tb<sup>3+</sup> concentration. DC electrical conductivity measurements also indicated the semiconducting characteristics of the samples. Magnetic measurements were performed using VSM. The addition of Tb<sup>3+</sup> ions resulted in a decrease in the saturation magnetization from 29.32 (x = 0.00) to 8.61 (x = 0.25) emu/g. In addition, the anisotropy constant and anisotropy field decreased with increasing Tb<sup>3+</sup> ion content because of secondary phase formation. Tunable magnetic softening, semiconducting nature, and anisotropy control are essential for tailoring materials for spintronic applications.</div></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"25 \",\"pages\":\"Article 100308\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032625000584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Investigation of structural, electrical, and magnetic anisotropy studies of the rare earth (Tb3+) ion substituted Mg-Ni nanocrystalline ferrites for spintronic applications
Tb3+ ion-doped Mg-Ni nanocrystalline ferrites with the chemical formula Mg0.2Ni0.8TbxFe2-xO4 (x = 0.00 to 0.25) were synthesized using the sol-gel auto-combustion method. The structural properties of all samples were analyzed using X-ray diffraction, FTIR, and UV–visible spectroscopy. XRD studies confirmed the existence of a secondary phase in samples with x = 0.15 to higher concentrations. The lattice constant decreased, and the X-ray density increased with increasing Tb3+ ions. The two prominent absorption bands observed in the FTIR spectra confirmed the spinel structure. The direct band gap obtained from the UV–vis investigation was in the range of 1.85–1.67 eV, confirming semiconducting behavior. The grain size calculated using FESEM increased with increasing Tb3+ concentration. DC electrical conductivity measurements also indicated the semiconducting characteristics of the samples. Magnetic measurements were performed using VSM. The addition of Tb3+ ions resulted in a decrease in the saturation magnetization from 29.32 (x = 0.00) to 8.61 (x = 0.25) emu/g. In addition, the anisotropy constant and anisotropy field decreased with increasing Tb3+ ion content because of secondary phase formation. Tunable magnetic softening, semiconducting nature, and anisotropy control are essential for tailoring materials for spintronic applications.