用jines - cummings模型研究了两个原子之间的Rydberg阻滞相互作用的拉比振荡和纠缠

IF 1.4 Q2 Physics and Astronomy
Francisco D. Santillan, Andreas Hanke
{"title":"用jines - cummings模型研究了两个原子之间的Rydberg阻滞相互作用的拉比振荡和纠缠","authors":"Francisco D. Santillan,&nbsp;Andreas Hanke","doi":"10.1016/j.physo.2025.100292","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance (<span><math><mrow><mo>&lt;</mo><mn>10</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes–Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We consider both number (Fock) states of the field and single-mode quantum coherent states. In particular, we discuss different types of entanglements between various components of the total system consisting of the two Rydberg-interacting atoms and coherent states of the field, and show that the behavior is significantly different compared to a system with non-interacting atoms corresponding to the two-atom Tavis-Cummings model. Our results are relevant in view of atom-light quantum interfaces as components for future long-distance quantum communication.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100292"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade studied by the Jaynes–Cummings Model\",\"authors\":\"Francisco D. Santillan,&nbsp;Andreas Hanke\",\"doi\":\"10.1016/j.physo.2025.100292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance (<span><math><mrow><mo>&lt;</mo><mn>10</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes–Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We consider both number (Fock) states of the field and single-mode quantum coherent states. In particular, we discuss different types of entanglements between various components of the total system consisting of the two Rydberg-interacting atoms and coherent states of the field, and show that the behavior is significantly different compared to a system with non-interacting atoms corresponding to the two-atom Tavis-Cummings model. Our results are relevant in view of atom-light quantum interfaces as components for future long-distance quantum communication.</div></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"24 \",\"pages\":\"Article 100292\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032625000420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

原子与量子化辐射场之间的相互作用在量子光学和量子信息科学中具有重要意义。由于其不寻常的性质,里德伯原子是两量子比特门和原子-光量子界面的有希望的构建块,利用里德伯封锁相互作用,防止两个距离近(<10μm)的原子同时被激发到里德伯态。最近,这种效应被用于设计基于拉曼激光照射下相互作用的里德伯原子阵列的量子处理器。在这些实验的激励下,我们扩展了jines - cummings模型来研究两个Rydberg原子在Rydberg封锁和量子化辐射场相互作用下的相互作用。我们考虑了场的数态(Fock)和单模量子相干态。特别地,我们讨论了由两个rydberg相互作用的原子和场的相干态组成的总系统的不同组分之间的不同类型的纠缠,并表明其行为与对应于双原子Tavis-Cummings模型的非相互作用原子的系统相比有显着不同。我们的研究结果对原子-光量子接口作为未来远距离量子通信的组成部分具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade studied by the Jaynes–Cummings Model
The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance (<10μm) from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes–Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We consider both number (Fock) states of the field and single-mode quantum coherent states. In particular, we discuss different types of entanglements between various components of the total system consisting of the two Rydberg-interacting atoms and coherent states of the field, and show that the behavior is significantly different compared to a system with non-interacting atoms corresponding to the two-atom Tavis-Cummings model. Our results are relevant in view of atom-light quantum interfaces as components for future long-distance quantum communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信