{"title":"Matroids of Gain Signed Graphs","authors":"Laura Anderson, Ting Su, Thomas Zaslavsky","doi":"10.1007/s00454-023-00568-z","DOIUrl":"https://doi.org/10.1007/s00454-023-00568-z","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"54 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135512175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Identity for the Coefficients of Characteristic Polynomials of Hyperplane Arrangements","authors":"Zakhar Kabluchko","doi":"10.1007/s00454-023-00577-y","DOIUrl":"https://doi.org/10.1007/s00454-023-00577-y","url":null,"abstract":"Abstract Consider a finite collection of affine hyperplanes in $$mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> . The hyperplanes dissect $$mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> into finitely many polyhedral chambers. For a point $$xin mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> and a chamber P the metric projection of x onto P is the unique point $$yin P$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$text {dim}(x,P)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We prove that for every given $$kin {0,ldots , d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> , the number of chambers P for which $$text {dim}(x,P) = k$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:math> does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"9 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, Alexander Wolff
{"title":"Adjacency Graphs of Polyhedral Surfaces","authors":"Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, Alexander Wolff","doi":"10.1007/s00454-023-00537-6","DOIUrl":"https://doi.org/10.1007/s00454-023-00537-6","url":null,"abstract":"Abstract We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $${mathbb {R}}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $$K_5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:math> , $$K_{5,81}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>81</mml:mn> </mml:mrow> </mml:msub> </mml:math> , or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $$K_{4,4}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:math> , and $$K_{3,5}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msub> </mml:math> can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (Isr. J. Math. 46 (1–2), 127–144 (1983)), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n -vertex graphs is in $$Omega (nlog n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . From the non-realizability of $$K_{5,81}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>81</mml:mn> </mml:mrow> </mml:msub> </mml:math> , we obtain that any realizable n -vertex graph has $${mathcal {O}}(n^{9/5})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>9</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135823694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evasive Sets, Covering by Subspaces, and Point-Hyperplane Incidences","authors":"Benny Sudakov, István Tomon","doi":"10.1007/s00454-023-00601-1","DOIUrl":"https://doi.org/10.1007/s00454-023-00601-1","url":null,"abstract":"Abstract Given positive integers $$kle d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>d</mml:mi> </mml:mrow> </mml:math> and a finite field $$mathbb {F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> , a set $$Ssubset mathbb {F}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is ( k , c )- subspace evasive if every k -dimensional affine subspace contains at most c elements of S . By a simple averaging argument, the maximum size of a ( k , c )-subspace evasive set is at most $$c |mathbb {F}|^{d-k}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>|</mml:mo> <mml:mi>F</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:math> . When k and d are fixed, and c is sufficiently large, the matching lower bound $$Omega (|mathbb {F}|^{d-k})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>F</mml:mi> <mml:msup> <mml:mo>|</mml:mo> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is proved by Dvir and Lovett. We provide an alternative proof of this result using the random algebraic method. We also prove sharp upper bounds on the size of ( k , c )-evasive sets in case d is large, extending results of Ben-Aroya and Shinkar. The existence of optimal evasive sets has several interesting consequences in combinatorial geometry. We show that the minimum number of k -dimensional linear hyperplanes needed to cover the grid $$[n]^{d}subset mathbb {R}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is $$Omega _{d}big (n^{frac{d(d-k)}{d-1}}big )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>Ω</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> </mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which matches the upper bound proved by Balko et al., and settles a problem proposed by Brass et al. Furthermore, we improve the best known lower b","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"266 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pizza and 2-Structures","authors":"Richard Ehrenborg, Sophie Morel, Margaret Readdy","doi":"10.1007/s00454-023-00600-2","DOIUrl":"https://doi.org/10.1007/s00454-023-00600-2","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Embeddings of k-Complexes into 2k-Manifolds","authors":"Pavel Paták, Martin Tancer","doi":"10.1007/s00454-023-00595-w","DOIUrl":"https://doi.org/10.1007/s00454-023-00595-w","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lower Bound on Translative Covering Density of Tetrahedra","authors":"Yiming Li, Miao Fu, Yuqin Zhang","doi":"10.1007/s00454-023-00602-0","DOIUrl":"https://doi.org/10.1007/s00454-023-00602-0","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tropical Compactification via Ganter’s Algorithm","authors":"Lars Kastner, Kristin Shaw, Anna-Lena Winz","doi":"10.1007/s00454-023-00581-2","DOIUrl":"https://doi.org/10.1007/s00454-023-00581-2","url":null,"abstract":"Abstract We describe a canonical compactification of a polyhedral complex in Euclidean space. When the recession cones of the polyhedral complex form a fan, the compactified polyhedral complex is a subspace of a tropical toric variety. In this case, the procedure is analogous to the tropical compactifications of subvarieties of tori. We give an analysis of the combinatorial structure of the compactification and show that its Hasse diagram can be computed via Ganter’s algorithm. Our algorithm is implemented in and shipped with .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135765927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}