Evasive Sets, Covering by Subspaces, and Point-Hyperplane Incidences

Benny Sudakov, István Tomon
{"title":"Evasive Sets, Covering by Subspaces, and Point-Hyperplane Incidences","authors":"Benny Sudakov, István Tomon","doi":"10.1007/s00454-023-00601-1","DOIUrl":null,"url":null,"abstract":"Abstract Given positive integers $$k\\le d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>d</mml:mi> </mml:mrow> </mml:math> and a finite field $$\\mathbb {F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> , a set $$S\\subset \\mathbb {F}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is ( k , c )- subspace evasive if every k -dimensional affine subspace contains at most c elements of S . By a simple averaging argument, the maximum size of a ( k , c )-subspace evasive set is at most $$c |\\mathbb {F}|^{d-k}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>|</mml:mo> <mml:mi>F</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:math> . When k and d are fixed, and c is sufficiently large, the matching lower bound $$\\Omega (|\\mathbb {F}|^{d-k})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>F</mml:mi> <mml:msup> <mml:mo>|</mml:mo> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is proved by Dvir and Lovett. We provide an alternative proof of this result using the random algebraic method. We also prove sharp upper bounds on the size of ( k , c )-evasive sets in case d is large, extending results of Ben-Aroya and Shinkar. The existence of optimal evasive sets has several interesting consequences in combinatorial geometry. We show that the minimum number of k -dimensional linear hyperplanes needed to cover the grid $$[n]^{d}\\subset \\mathbb {R}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is $$\\Omega _{d}\\big (n^{\\frac{d(d-k)}{d-1}}\\big )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>Ω</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> </mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which matches the upper bound proved by Balko et al., and settles a problem proposed by Brass et al. Furthermore, we improve the best known lower bound on the maximum number of incidences between points and hyperplanes in $$\\mathbb {R}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> assuming their incidence graph avoids the complete bipartite graph $$K_{c,c}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> </mml:msub> </mml:math> for some large constant $$c=c(d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00601-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Given positive integers $$k\le d$$ k d and a finite field $$\mathbb {F}$$ F , a set $$S\subset \mathbb {F}^{d}$$ S F d is ( k , c )- subspace evasive if every k -dimensional affine subspace contains at most c elements of S . By a simple averaging argument, the maximum size of a ( k , c )-subspace evasive set is at most $$c |\mathbb {F}|^{d-k}$$ c | F | d - k . When k and d are fixed, and c is sufficiently large, the matching lower bound $$\Omega (|\mathbb {F}|^{d-k})$$ Ω ( | F | d - k ) is proved by Dvir and Lovett. We provide an alternative proof of this result using the random algebraic method. We also prove sharp upper bounds on the size of ( k , c )-evasive sets in case d is large, extending results of Ben-Aroya and Shinkar. The existence of optimal evasive sets has several interesting consequences in combinatorial geometry. We show that the minimum number of k -dimensional linear hyperplanes needed to cover the grid $$[n]^{d}\subset \mathbb {R}^{d}$$ [ n ] d R d is $$\Omega _{d}\big (n^{\frac{d(d-k)}{d-1}}\big )$$ Ω d ( n d ( d - k ) d - 1 ) , which matches the upper bound proved by Balko et al., and settles a problem proposed by Brass et al. Furthermore, we improve the best known lower bound on the maximum number of incidences between points and hyperplanes in $$\mathbb {R}^{d}$$ R d assuming their incidence graph avoids the complete bipartite graph $$K_{c,c}$$ K c , c for some large constant $$c=c(d)$$ c = c ( d ) .
回避集、子空间覆盖与点-超平面关联
给定正整数$$k\le d$$ k≤d和有限域$$\mathbb {F}$$ F,如果每个k维仿射子空间最多包含S的c个元素,则集合$$S\subset \mathbb {F}^{d}$$ S∧F d是(k, c)-子空间可逃避性。通过一个简单的平均论证,(k, c)-子空间回避集的最大大小不超过$$c |\mathbb {F}|^{d-k}$$ c | F | d - k。当k和d固定,且c足够大时,匹配的下界$$\Omega (|\mathbb {F}|^{d-k})$$ Ω (| F | d - k)由Dvir和Lovett证明。我们用随机代数方法给出了这个结果的另一种证明。我们还证明了在d较大的情况下(k, c)-回避集大小的明显上界,扩展了Ben-Aroya和Shinkar的结果。最优回避集的存在性在组合几何中有几个有趣的结果。我们证明了覆盖网格$$[n]^{d}\subset \mathbb {R}^{d}$$ [n] d∧R d所需的k维线性超平面的最小数量为$$\Omega _{d}\big (n^{\frac{d(d-k)}{d-1}}\big )$$ Ω d (nd (d - k) d - 1),与Balko等人证明的上界相匹配,解决了Brass等人提出的问题。此外,我们改进了$$\mathbb {R}^{d}$$ R d中点和超平面之间最大关联数的下界,假设它们的关联图避免了完全二部图$$K_{c,c}$$ K c, c对于某些大常数$$c=c(d)$$ c = c (d)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信