{"title":"Evasive Sets, Covering by Subspaces, and Point-Hyperplane Incidences","authors":"Benny Sudakov, István Tomon","doi":"10.1007/s00454-023-00601-1","DOIUrl":null,"url":null,"abstract":"Abstract Given positive integers $$k\\le d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>d</mml:mi> </mml:mrow> </mml:math> and a finite field $$\\mathbb {F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> , a set $$S\\subset \\mathbb {F}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is ( k , c )- subspace evasive if every k -dimensional affine subspace contains at most c elements of S . By a simple averaging argument, the maximum size of a ( k , c )-subspace evasive set is at most $$c |\\mathbb {F}|^{d-k}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>|</mml:mo> <mml:mi>F</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:math> . When k and d are fixed, and c is sufficiently large, the matching lower bound $$\\Omega (|\\mathbb {F}|^{d-k})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>F</mml:mi> <mml:msup> <mml:mo>|</mml:mo> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is proved by Dvir and Lovett. We provide an alternative proof of this result using the random algebraic method. We also prove sharp upper bounds on the size of ( k , c )-evasive sets in case d is large, extending results of Ben-Aroya and Shinkar. The existence of optimal evasive sets has several interesting consequences in combinatorial geometry. We show that the minimum number of k -dimensional linear hyperplanes needed to cover the grid $$[n]^{d}\\subset \\mathbb {R}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is $$\\Omega _{d}\\big (n^{\\frac{d(d-k)}{d-1}}\\big )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>Ω</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> </mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which matches the upper bound proved by Balko et al., and settles a problem proposed by Brass et al. Furthermore, we improve the best known lower bound on the maximum number of incidences between points and hyperplanes in $$\\mathbb {R}^{d}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> assuming their incidence graph avoids the complete bipartite graph $$K_{c,c}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> </mml:msub> </mml:math> for some large constant $$c=c(d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00601-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Given positive integers $$k\le d$$ k≤d and a finite field $$\mathbb {F}$$ F , a set $$S\subset \mathbb {F}^{d}$$ S⊂Fd is ( k , c )- subspace evasive if every k -dimensional affine subspace contains at most c elements of S . By a simple averaging argument, the maximum size of a ( k , c )-subspace evasive set is at most $$c |\mathbb {F}|^{d-k}$$ c|F|d-k . When k and d are fixed, and c is sufficiently large, the matching lower bound $$\Omega (|\mathbb {F}|^{d-k})$$ Ω(|F|d-k) is proved by Dvir and Lovett. We provide an alternative proof of this result using the random algebraic method. We also prove sharp upper bounds on the size of ( k , c )-evasive sets in case d is large, extending results of Ben-Aroya and Shinkar. The existence of optimal evasive sets has several interesting consequences in combinatorial geometry. We show that the minimum number of k -dimensional linear hyperplanes needed to cover the grid $$[n]^{d}\subset \mathbb {R}^{d}$$ [n]d⊂Rd is $$\Omega _{d}\big (n^{\frac{d(d-k)}{d-1}}\big )$$ Ωd(nd(d-k)d-1) , which matches the upper bound proved by Balko et al., and settles a problem proposed by Brass et al. Furthermore, we improve the best known lower bound on the maximum number of incidences between points and hyperplanes in $$\mathbb {R}^{d}$$ Rd assuming their incidence graph avoids the complete bipartite graph $$K_{c,c}$$ Kc,c for some large constant $$c=c(d)$$ c=c(d) .