{"title":"Discrete Morse Theory for Computing Zigzag Persistence","authors":"Clément Maria, Hannah Schreiber","doi":"10.1007/s00454-023-00594-x","DOIUrl":"https://doi.org/10.1007/s00454-023-00594-x","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"10 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136227760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distortion Reversal in Aperiodic Tilings","authors":"Louisa Barnsley, Michael Barnsley, Andrew Vince","doi":"10.1007/s00454-023-00607-9","DOIUrl":"https://doi.org/10.1007/s00454-023-00607-9","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"4 26","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136229854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Kynčl, Marcus Schaefer, Eric Sedgwick, Daniel Štefankovič
{"title":"Spiraling and Folding: The Topological View","authors":"Jan Kynčl, Marcus Schaefer, Eric Sedgwick, Daniel Štefankovič","doi":"10.1007/s00454-023-00603-z","DOIUrl":"https://doi.org/10.1007/s00454-023-00603-z","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"82 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing Characteristic Polynomials of Hyperplane Arrangements with Symmetries","authors":"Taylor Brysiewicz, Holger Eble, Lukas Kühne","doi":"10.1007/s00454-023-00557-2","DOIUrl":"https://doi.org/10.1007/s00454-023-00557-2","url":null,"abstract":"Abstract We introduce a new algorithm computing the characteristic polynomials of hyperplane arrangements which exploits their underlying symmetry groups. Our algorithm counts the chambers of an arrangement as a byproduct of computing its characteristic polynomial. We showcase our implementation, based on , on examples coming from hyperplane arrangements with applications to physics and computer science.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135539362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An $$mathcal {O}(3.82^{k})$$ Time $$textsf {FPT}$$ Algorithm for Convex Flip Distance","authors":"Haohong Li, Ge Xia","doi":"10.1007/s00454-023-00596-9","DOIUrl":"https://doi.org/10.1007/s00454-023-00596-9","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"112 15","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135724539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Structure of Pointsets with Many Collinear Triples","authors":"József Solymosi","doi":"10.1007/s00454-023-00579-w","DOIUrl":"https://doi.org/10.1007/s00454-023-00579-w","url":null,"abstract":"","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"5 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Barth, Benjamin Niedermann, Ignaz Rutter, Matthias Wolf
{"title":"A Topology-Shape-Metrics Framework for Ortho-Radial Graph Drawing","authors":"Lukas Barth, Benjamin Niedermann, Ignaz Rutter, Matthias Wolf","doi":"10.1007/s00454-023-00593-y","DOIUrl":"https://doi.org/10.1007/s00454-023-00593-y","url":null,"abstract":"Abstract Orthogonal drawings, i.e., embeddings of graphs into grids, are a classic topic in Graph Drawing. Often the goal is to find a drawing that minimizes the number of bends on the edges. A key ingredient for bend minimization algorithms is the existence of an orthogonal representation that allows to describe such drawings purely combinatorially by only listing the angles between the edges around each vertex and the directions of bends on the edges, but neglecting any kind of geometric information such as vertex coordinates or edge lengths. In this work, we generalize this idea to ortho-radial representations of ortho-radial drawings , which are embeddings into an ortho-radial grid, whose gridlines are concentric circles around the origin and straight-line spokes emanating from the origin but excluding the origin itself. Unlike the orthogonal case, there exist ortho-radial representations that do not admit a corresponding drawing, for example so-called strictly monotone cycles. An ortho-radial representation is called valid if it does not contain a strictly monotone cycle. Our first main result is that an ortho-radial representation admits a corresponding drawing if and only if it is valid. Previously such a characterization was only known for ortho-radial drawings of paths, cycles, and theta graphs (Hasheminezhad et al. in Australas J Combin 44:171–182, 2009), and in the special case of rectangular drawings of cubic graphs (Hasheminezhad et al. in Comput Geom 43(9):767–780, 2010), where the contour of each face is required to be a combinatorial rectangle. Additionally, we give a quadratic-time algorithm that tests for a given ortho-radial representation whether it is valid, and we show how to draw a valid ortho-radial representation in the same running time. Altogether, this reduces the problem of computing a minimum-bend ortho-radial drawing to the task of computing a valid ortho-radial representation with the minimum number of bends, and hence establishes an ortho-radial analogue of the topology-shape-metrics framework for planar orthogonal drawings by Tamassia (SIAM J Comput 16(3):421–444, 1987).","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"40 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Limit of $$L_p$$ Voronoi Diagrams as $$prightarrow 0$$ is the Bounding-Box-Area Voronoi Diagram","authors":"Herman Haverkort, Rolf Klein","doi":"10.1007/s00454-023-00599-6","DOIUrl":"https://doi.org/10.1007/s00454-023-00599-6","url":null,"abstract":"Abstract We consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>-</mml:mo> <mml:mi>b</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> </mml:math> as defined above the geometric $$L_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> distance .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"104 7-8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}