{"title":"The Limit of $$L_p$$ Voronoi Diagrams as $$p\\rightarrow 0$$ is the Bounding-Box-Area Voronoi Diagram","authors":"Herman Haverkort, Rolf Klein","doi":"10.1007/s00454-023-00599-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>-</mml:mo> <mml:mi>b</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> </mml:math> as defined above the geometric $$L_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> distance .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"104 7-8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00599-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$ Lp(a-b) where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ Lp((x,y))=(|x|p+|y|p)1/p. We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$ L∗((x,y))=|xy| . In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$ L∗ as defined above the geometric $$L_0$$ L0 distance .
考虑实平面上两点间的距离为$$L_p(a-b)$$ L p (a - b)的Voronoi图,其中$$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ L p ((x, y)) = (| x | p + | y | p) 1 / p。我们证明了Voronoi图在p从上或从下收敛于零时有一个极限:它是对应于距离函数$$L_*((x,y)) = |xy|$$ L∗((x, y)) = | x y |的图。在这个图中,一般位置上两点的平分线由一条直线和双曲线的两个分支组成,每个点将平面分成三个面。我们建议将$$L_*$$ L *命名为上面定义的几何距离$$L_0$$ l0。