$$L_p$$ Voronoi图的极限为$$p\rightarrow 0$$是边界框面积Voronoi图

Herman Haverkort, Rolf Klein
{"title":"$$L_p$$ Voronoi图的极限为$$p\\rightarrow 0$$是边界框面积Voronoi图","authors":"Herman Haverkort, Rolf Klein","doi":"10.1007/s00454-023-00599-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>-</mml:mo> <mml:mi>b</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> </mml:math> as defined above the geometric $$L_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> distance .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"104 7-8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Limit of $$L_p$$ Voronoi Diagrams as $$p\\\\rightarrow 0$$ is the Bounding-Box-Area Voronoi Diagram\",\"authors\":\"Herman Haverkort, Rolf Klein\",\"doi\":\"10.1007/s00454-023-00599-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>-</mml:mo> <mml:mi>b</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msub> </mml:math> as defined above the geometric $$L_0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> distance .\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"104 7-8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00599-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00599-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑实平面上两点间的距离为$$L_p(a-b)$$ L p (a - b)的Voronoi图,其中$$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ L p ((x, y)) = (| x | p + | y | p) 1 / p。我们证明了Voronoi图在p从上或从下收敛于零时有一个极限:它是对应于距离函数$$L_*((x,y)) = |xy|$$ L∗((x, y)) = | x y |的图。在这个图中,一般位置上两点的平分线由一条直线和双曲线的两个分支组成,每个点将平面分成三个面。我们建议将$$L_*$$ L *命名为上面定义的几何距离$$L_0$$ l0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Limit of $$L_p$$ Voronoi Diagrams as $$p\rightarrow 0$$ is the Bounding-Box-Area Voronoi Diagram

The Limit of $$L_p$$ Voronoi Diagrams as $$p\rightarrow 0$$ is the Bounding-Box-Area Voronoi Diagram
Abstract We consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$ L p ( a - b ) where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$ L p ( ( x , y ) ) = ( | x | p + | y | p ) 1 / p . We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$ L ( ( x , y ) ) = | x y | . In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$ L as defined above the geometric $$L_0$$ L 0 distance .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信