多面体曲面的邻接图

Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, Alexander Wolff
{"title":"多面体曲面的邻接图","authors":"Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, Alexander Wolff","doi":"10.1007/s00454-023-00537-6","DOIUrl":null,"url":null,"abstract":"Abstract We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $${\\mathbb {R}}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $$K_5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:math> , $$K_{5,81}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>81</mml:mn> </mml:mrow> </mml:msub> </mml:math> , or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $$K_{4,4}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:math> , and $$K_{3,5}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msub> </mml:math> can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (Isr. J. Math. 46 (1–2), 127–144 (1983)), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n -vertex graphs is in $$\\Omega (n\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . From the non-realizability of $$K_{5,81}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>81</mml:mn> </mml:mrow> </mml:msub> </mml:math> , we obtain that any realizable n -vertex graph has $${\\mathcal {O}}(n^{9/5})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>9</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjacency Graphs of Polyhedral Surfaces\",\"authors\":\"Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, Alexander Wolff\",\"doi\":\"10.1007/s00454-023-00537-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $${\\\\mathbb {R}}^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $$K_5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:math> , $$K_{5,81}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>81</mml:mn> </mml:mrow> </mml:msub> </mml:math> , or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $$K_{4,4}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:math> , and $$K_{3,5}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msub> </mml:math> can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (Isr. J. Math. 46 (1–2), 127–144 (1983)), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n -vertex graphs is in $$\\\\Omega (n\\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . From the non-realizability of $$K_{5,81}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>81</mml:mn> </mml:mrow> </mml:msub> </mml:math> , we obtain that any realizable n -vertex graph has $${\\\\mathcal {O}}(n^{9/5})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>9</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00537-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00537-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了在$${\mathbb {R}}^3$$ r3中给定的图是否可以被实现为多面体表面多边形细胞的邻接图。我们证明了每个图都可以实现为具有任意多边形细胞的多面体表面,如果我们要求细胞是凸的,这就不成立了。特别是,如果给定的图包含$$K_5$$ k5, $$K_{5,81}$$ k5, 81或任何非平面3-tree作为子图,则不存在这种实现。另一方面,所有的平面图,$$K_{4,4}$$ k4,4和$$K_{3,5}$$ k3,5都可以用凸单元来实现。这同样适用于任何图的任何细分,其中每条边至少细分一次,并且根据McMullen等人的结果。数学学报,46(1-2),127-144(1983))。我们的结果对描述具有凸胞的多面体表面的图的最大密度有影响:超立方体的可实现性表明,所有可实现的n顶点图的最大边数是$$\Omega (n\log n)$$ Ω (n log n)。根据$$K_{5,81}$$ K 5,81的不可实现性,我们得到任何可实现的n顶点图都有$${\mathcal {O}}(n^{9/5})$$ O (n 9 / 5)条边。因此,这些图可以比平面图密集得多,但不是任意密集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adjacency Graphs of Polyhedral Surfaces

Adjacency Graphs of Polyhedral Surfaces
Abstract We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $${\mathbb {R}}^3$$ R 3 . We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $$K_5$$ K 5 , $$K_{5,81}$$ K 5 , 81 , or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $$K_{4,4}$$ K 4 , 4 , and $$K_{3,5}$$ K 3 , 5 can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (Isr. J. Math. 46 (1–2), 127–144 (1983)), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n -vertex graphs is in $$\Omega (n\log n)$$ Ω ( n log n ) . From the non-realizability of $$K_{5,81}$$ K 5 , 81 , we obtain that any realizable n -vertex graph has $${\mathcal {O}}(n^{9/5})$$ O ( n 9 / 5 ) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信