超平面排列特征多项式系数的一个恒等式

Zakhar Kabluchko
{"title":"超平面排列特征多项式系数的一个恒等式","authors":"Zakhar Kabluchko","doi":"10.1007/s00454-023-00577-y","DOIUrl":null,"url":null,"abstract":"Abstract Consider a finite collection of affine hyperplanes in $$\\mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> . The hyperplanes dissect $$\\mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> into finitely many polyhedral chambers. For a point $$x\\in \\mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> and a chamber P the metric projection of x onto P is the unique point $$y\\in P$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$\\text {dim}(x,P)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We prove that for every given $$k\\in \\{0,\\ldots , d\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> , the number of chambers P for which $$\\text {dim}(x,P) = k$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:math> does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"9 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Identity for the Coefficients of Characteristic Polynomials of Hyperplane Arrangements\",\"authors\":\"Zakhar Kabluchko\",\"doi\":\"10.1007/s00454-023-00577-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Consider a finite collection of affine hyperplanes in $$\\\\mathbb R^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> . The hyperplanes dissect $$\\\\mathbb R^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> into finitely many polyhedral chambers. For a point $$x\\\\in \\\\mathbb R^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> and a chamber P the metric projection of x onto P is the unique point $$y\\\\in P$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$\\\\text {dim}(x,P)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We prove that for every given $$k\\\\in \\\\{0,\\\\ldots , d\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> , the number of chambers P for which $$\\\\text {dim}(x,P) = k$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:math> does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"9 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00577-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00577-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑$$\mathbb R^d$$ rd中仿射超平面的有限集合。超平面将$$\mathbb R^d$$ rd分解成有限多个多面体腔室。对于点$$x\in \mathbb R^d$$ x∈R d和室P, x在P上的度规投影是使到x的欧氏距离最小的唯一点$$y\in P$$ y∈P。度量投影包含在P的唯一定义面的相对内部,其维度表示为$$\text {dim}(x,P)$$ dim (x, P)。证明了对于每个给定的$$k\in \{0,\ldots , d\}$$ k∈{0,…,d},除了某些Lebesgue零集外,$$\text {dim}(x,P) = k$$ dim (x, P) = k的室数P不依赖于x的选择。而且,这个数等于超平面排列的特征多项式的第k个系数的绝对值。在反射排列的特殊情况下,这证明了Drton和Klivans的一个猜想[反射排列特征多项式的几何解释]。美国程序。数学。中国生物医学工程学报,2013(5):387 - 387。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Identity for the Coefficients of Characteristic Polynomials of Hyperplane Arrangements
Abstract Consider a finite collection of affine hyperplanes in $$\mathbb R^d$$ R d . The hyperplanes dissect $$\mathbb R^d$$ R d into finitely many polyhedral chambers. For a point $$x\in \mathbb R^d$$ x R d and a chamber P the metric projection of x onto P is the unique point $$y\in P$$ y P minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$\text {dim}(x,P)$$ dim ( x , P ) . We prove that for every given $$k\in \{0,\ldots , d\}$$ k { 0 , , d } , the number of chambers P for which $$\text {dim}(x,P) = k$$ dim ( x , P ) = k does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信