{"title":"超平面排列特征多项式系数的一个恒等式","authors":"Zakhar Kabluchko","doi":"10.1007/s00454-023-00577-y","DOIUrl":null,"url":null,"abstract":"Abstract Consider a finite collection of affine hyperplanes in $$\\mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> . The hyperplanes dissect $$\\mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> into finitely many polyhedral chambers. For a point $$x\\in \\mathbb R^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> and a chamber P the metric projection of x onto P is the unique point $$y\\in P$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$\\text {dim}(x,P)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We prove that for every given $$k\\in \\{0,\\ldots , d\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> , the number of chambers P for which $$\\text {dim}(x,P) = k$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:math> does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"9 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Identity for the Coefficients of Characteristic Polynomials of Hyperplane Arrangements\",\"authors\":\"Zakhar Kabluchko\",\"doi\":\"10.1007/s00454-023-00577-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Consider a finite collection of affine hyperplanes in $$\\\\mathbb R^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> . The hyperplanes dissect $$\\\\mathbb R^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:math> into finitely many polyhedral chambers. For a point $$x\\\\in \\\\mathbb R^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> and a chamber P the metric projection of x onto P is the unique point $$y\\\\in P$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$\\\\text {dim}(x,P)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We prove that for every given $$k\\\\in \\\\{0,\\\\ldots , d\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> , the number of chambers P for which $$\\\\text {dim}(x,P) = k$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>dim</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:math> does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"9 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00577-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00577-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Identity for the Coefficients of Characteristic Polynomials of Hyperplane Arrangements
Abstract Consider a finite collection of affine hyperplanes in $$\mathbb R^d$$ Rd . The hyperplanes dissect $$\mathbb R^d$$ Rd into finitely many polyhedral chambers. For a point $$x\in \mathbb R^d$$ x∈Rd and a chamber P the metric projection of x onto P is the unique point $$y\in P$$ y∈P minimizing the Euclidean distance to x . The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by $$\text {dim}(x,P)$$ dim(x,P) . We prove that for every given $$k\in \{0,\ldots , d\}$$ k∈{0,…,d} , the number of chambers P for which $$\text {dim}(x,P) = k$$ dim(x,P)=k does not depend on the choice of x , with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k -th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138 (8), 2873–2887 (2010)].