Diego Felipe Araujo Diniz , Tatiany Patrícia Romão , Elisama Helvécio , Danilo de Carvalho-Leandro , Morgana do Nascimento Xavier , Christina Alves Peixoto , Osvaldo Pompílio de Melo Neto , Maria Alice Varjal de Melo-Santos , Constância Flávia Junqueira Ayres
{"title":"A comparative analysis of Aedes albopictus and Aedes aegypti subjected to diapause-inducing conditions reveals conserved and divergent aspects associated with diapause, as well as novel genes associated with its onset","authors":"Diego Felipe Araujo Diniz , Tatiany Patrícia Romão , Elisama Helvécio , Danilo de Carvalho-Leandro , Morgana do Nascimento Xavier , Christina Alves Peixoto , Osvaldo Pompílio de Melo Neto , Maria Alice Varjal de Melo-Santos , Constância Flávia Junqueira Ayres","doi":"10.1016/j.cris.2022.100047","DOIUrl":"10.1016/j.cris.2022.100047","url":null,"abstract":"<div><p><em>Aedes albopictus</em> and <em>Aedes aegypti</em> are mosquito species that are distributed worldwide and transmit diverse arboviruses of medical importance, such as those causing yellow fever, dengue, chikungunya and Zika. <em>A. albopictus</em> embryos may remain viable for long periods in the environment due to their ability to become dormant through quiescence or diapause, a feature that contributes to their dispersion and hinders control actions. Diapause incidence can vary among natural populations of <em>A. albopictus</em>, but metabolic and genetic parameters associated with its induction still need to be better defined. The present study aimed to investigate the effect of exposure to diapause-inducing conditions on several biological parameters in different populations of <em>A. albopictus</em> (from tropical and temperate areas) and the diapause-refractory <em>A. aegypti</em> (tropical and subtropical populations). As expected, only the <em>A. albopictus</em> populations exhibited diapause, but with a lower incidence for the population from a tropical area. Exposure to diapause-inducing conditions, however, led to a sharp reduction in fecundity for both <em>A. albopictus</em> and <em>A. aegypti</em> tropical populations, with no effect on fertility (>90%). It also led to a prolonged period as pupae for the progeny of all induced groups, with a further delay for those from temperate climates. In all those induced groups, the lipid contents in eggs and adult females were higher than in the non-induced controls, with the highest values observed for both <em>A. albopictus</em> groups. Three genes were selected to have their expression profile investigated: <em>cathepsin, idgf4,</em> and <em>pepck</em>. Upon exposure to diapause-inducing conditions, all three genes were upregulated in the <em>A. albopictus</em> embryos from the tropical region, but only <em>idgf4</em> was upregulated in the temperate climate embryos. This represents a new gene associated with diapause that can be used as a target to evaluate and prevent embryonic dormancy, a possible new vector control strategy for mosquito species from temperate areas, such as <em>A. albopictus</em>.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100047"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/2a/main.PMC9846470.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10571849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mounting evidence that managed and introduced bees have negative impacts on wild bees: an updated review","authors":"Jay M. Iwasaki, Katja Hogendoorn","doi":"10.1016/j.cris.2022.100043","DOIUrl":"10.1016/j.cris.2022.100043","url":null,"abstract":"<div><p>Worldwide, the use of managed bees for crop pollination and honey production has increased dramatically. Concerns about the pressures of these increases on native ecosystems has resulted in a recent expansion in the literature on this subject. To collate and update current knowledge, we performed a systematic review of the literature on the effects of managed and introduced bees on native ecosystems, focusing on the effects on wild bees. To enable comparison over time, we used the same search terms and focused on the same impacts as earlier reviews. This review covers: (a) interference and resource competition between introduced or managed bees and native bees; (b) effects of introduced or managed bees on pollination of native plants and weeds; and (c) transmission and infectivity of pathogens; and classifies effects into positive, negative, or neutral. Compared to a 2017 review, we found that the number of papers on this issue has increased by 47%. The highest increase was seen in papers on pathogen spill-over, but in the last five years considerable additional information about competition between managed and wild bees has also become available. Records of negative effects have increased from 53% of papers reporting negative effects in 2017 to 66% at present. The majority of these studies investigated effects on visitation and foraging behaviour. While only a few studies experimentally assessed impacts on wild bee reproductive output, 78% of these demonstrated negative effects. Plant composition and pollination was negatively affected in 7% of studies, and 79% of studies on pathogens reported potential negative effects of managed or introduced bees on wild bees. Taken together, the evidence increasingly suggests that managed and introduced bees negatively affect wild bees, and this knowledge should inform actions to prevent further harm to native ecosystems.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100043"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40636756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nutritional phenotype underlines the performance trade-offs of Drosophila suzukii on different fruit diets","authors":"Runhang Shu , Laurice Uy , Adam Chun-Nin Wong","doi":"10.1016/j.cris.2021.100026","DOIUrl":"10.1016/j.cris.2021.100026","url":null,"abstract":"<div><p>Animals confined to different dietary conditions often exhibit distinct, sometimes contrasting, nutritional phenotypes and performance outcomes. This is especially true for many oviparous insects whose developmental diets can vary depending on the mother's egg-laying site selection. Much research on the relationship between preference and performance in insects has focused on larval success, which overlooks the complexities of dietary effects on diverse performance parameters across life stages and potential trade-offs between those parameters. Furthermore, the connection between diet-induced nutritional phenotype and performance trade-offs is not well understood. Here, using <em>Drosophila suzukii</em>, we quantify multiple performance indices of larvae and adults reared on five host fruits of different protein-to-sugar ratios (P:S) which have previously been shown to differ in attractiveness to fly foraging and oviposition. Our results demonstrate robust diet-specific performance trade-offs, with fly fecundity, larval development time, pupal size, and adult weight superior in flies reared on the high P:S raspberry diet, in contrast to the low P:S grape diet; but the reverse was found in terms of adult starvation resistance. Notably, the contrasting performance trade-offs are readily explained by the fly nutritional phenotype, reflected in the protein and energy (glucose and lipid) contents of flies reared on the two fruits. Together, our results provide experimental evidence for metabolic plasticity of <em>D. suzukii</em> reared on different fruits and the possibility of using adult nutritional phenotype as a marker for diet and performance outcomes.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/3e/main.PMC9387456.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40636752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin L. Macartney , Angela J Crean , Russell Bonduriansky
{"title":"Parental dietary protein effects on offspring viability in insects and other oviparous invertebrates: a meta-analysis","authors":"Erin L. Macartney , Angela J Crean , Russell Bonduriansky","doi":"10.1016/j.cris.2022.100045","DOIUrl":"10.1016/j.cris.2022.100045","url":null,"abstract":"<div><p>Dietary protein is a key regulator of reproductive effort in animals, but protein consumption also tends to accelerate senescence and reduce longevity. Given this protein-mediated trade-off between reproduction and survival, how does protein consumption by parents affect the viability of their offspring? In insects, protein consumption by females enhances fecundity, but trade-offs between offspring quantity and quality could result in negative effects of protein consumption on offspring viability. Likewise, protein consumption by males tends to enhance the expression of sexual traits but could have negative effects on offspring viability, mediated by epigenetic factors transmitted via the ejaculate. It remains unclear whether dietary protein has consistent effects on offspring viability across species, and whether these effects are sex-specific. To address this, we conducted a meta-analysis of experimental studies that examined the effects of protein content in the maternal and/or paternal diet in insects and other oviparous invertebrates. We did not find consistent effects of paternal or maternal protein consumption on offspring viability. Rather, effects of dietary protein on offspring vary in both magnitude and sign across taxonomic groups. Further studies are needed to determine how the effects of dietary protein on offspring relate to variation in reproductive biology across species. Our findings also highlight important gaps in the literature and limitations in experiment design.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100045"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/01/58/main.PMC9846472.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10581050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clare R. Beet , Ian D. Hogg , S. Craig Cary , Ian R. McDonald , Brent J. Sinclair
{"title":"The Resilience of Polar Collembola (Springtails) in a Changing Climate","authors":"Clare R. Beet , Ian D. Hogg , S. Craig Cary , Ian R. McDonald , Brent J. Sinclair","doi":"10.1016/j.cris.2022.100046","DOIUrl":"10.1016/j.cris.2022.100046","url":null,"abstract":"<div><p>Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100046"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/8d/main.PMC9846479.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10581055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in Drosophila melanogaster","authors":"J. Scanlan, Paul Battlay, C. Robin","doi":"10.1101/2021.09.15.460555","DOIUrl":"https://doi.org/10.1101/2021.09.15.460555","url":null,"abstract":"A unique aspect of metabolic detoxification in insects compared to other animals is the presence of xenobiotic phosphorylation, about which little is currently understood. Our previous work raised the hypothesis that members of the taxonomically restricted ecdysteroid kinase-like (EcKL) gene family encode the enzymes responsible for xenobiotic phosphorylation in the model insect Drosophila melanogaster (Diptera: Ephydroidea)—however, candidate detoxification genes identified in the EcKL family have yet to be functionally validated. Here, we test the hypothesis that EcKL genes in the rapidly evolving Dro5 clade are involved in the detoxification of plant and fungal toxins in D. melanogaster. The mining and reanalysis of existing data indicated multiple Dro5 genes are transcriptionally induced by the plant alkaloid caffeine and that adult caffeine susceptibility is associated with a novel naturally occurring indel in CG31370 (Dro5-8) in the Drosophila Genetic Reference Panel (DGRP). CRISPR-Cas9 mutagenesis of five Dro5 EcKLs substantially decreased developmental tolerance of caffeine, while individual overexpression of two of these genes—CG31300 (Dro5-1) and CG13659 (Dro5-7)—in detoxification-related tissues increased developmental tolerance. In addition, we found Dro5 loss-of-function animals also have decreased developmental tolerance of the fungal secondary metabolite kojic acid. Taken together, this work provides the first compelling functional evidence that EcKLs encode detoxification enzymes and suggests that EcKLs in the Dro5 clade are involved in the metabolism of multiple ecologically relevant toxins in D. melanogaster. We also propose a biochemical hypothesis for EcKL involvement in caffeine detoxification and highlight the many unknown aspects of caffeine metabolism in D. melanogaster and other insects. Highlights Phosphorylation is an under-characterised detoxification reaction in insects Dro5 EcKL genes are good detoxification candidate genes in Drosophila melanogaster Knockout and misexpression of some Dro5 genes modulated tolerance to caffeine Dro5 genes may also confer tolerance to the fungal toxin kojic acid Caffeine tolerance could be adaptive for Drosophila associating with Citrus fruits","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43842622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Alejandro Bochicchio , Martín Mariano Pérez , Luis Alberto Quesada-Allué , Alejandro Rabossi
{"title":"Completion of metamorphosis after adult emergence in Ceratitis capitata (Diptera: Tephritidae)","authors":"Pablo Alejandro Bochicchio , Martín Mariano Pérez , Luis Alberto Quesada-Allué , Alejandro Rabossi","doi":"10.1016/j.cris.2021.100017","DOIUrl":"https://doi.org/10.1016/j.cris.2021.100017","url":null,"abstract":"<div><p>The ecdysis of the imago is a crucial step in the development of holometabolous insects. However, no information on several aspects of <em>Ceratitis capitata</em> imago emergence and subsequent body maturation is available. We analysed behavioural events and evaluated the oxygen consumption and the dynamics of carbohydrate and lipid reserves during puparium extrication and in newly emerged imago until full wing expansion. A system for recording images with the corresponding software for image analysis was built for this purpose. After extrication, <em>C. capitata</em> showed two early postemergence phases: walking (6.56 ± 4.01 min, 6.2% of the wing spreading period, WSP) and the phase without locomotor motion (98.75 ± 26.04 min; 93.8% WSP). Three main events were recognized during the last phase. The first involved an initial expansion of the wings (11.12 ± 4.32 min). The second event was the progressive tanning of the body cuticle in general and the wing veins in particular, and the last entailed the definitive expansion of the wings to attain the characteristic arrow-shaped wing aspect. Our studies here complement previous descriptions of the tanning process of newly emerged medfly adults (Pérez et al., 2018). As a consequence of the results presented here, we consider that the initial events of the newly emerged adult could be interpreted as the last steps of metamorphosis.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"1 ","pages":"Article 100017"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cris.2021.100017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91765537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagule pressure helps overcome adverse environmental conditions during population establishment","authors":"D.L. Saccaggi , J.R.U. Wilson , J.S. Terblanche","doi":"10.1016/j.cris.2021.100011","DOIUrl":"10.1016/j.cris.2021.100011","url":null,"abstract":"<div><p>The establishment success of a population is a function of abiotic and biotic factors and introduction dynamics. Understanding how these factors interact has direct consequences for understanding and managing biological invasions and for applied ecology more generally. Here we use a mesocosm approach to explore how the size of founding populations and the number of introduction events interact with environmental conditions (temperature) to determine the establishment success of laboratory-reared <em>Drosophila melanogaster.</em> We found that temperature played the biggest role in establishment success, eclipsing the role of the other experimental factors when viewed overall. Under optimal temperature conditions propagule pressure was of negligible importance to establishment success. At adverse temperatures, however, establishment success increased with the total founding population size. This effect was considerably stronger at the cold than at the hot extreme. Whether the population was introduced all at once or by increments (changing the number of introduction events) had a negligible global effect. However, once again, a stronger effect of increasing number of introduction events was seen at adverse temperatures, with hot and cold extremes revealing opposite effects: adding flies incrementally decreased their establishment success at the hot extreme, but increased it at the cold extreme. These differing effects at hot and cold thermal extremes implies that different establishment mechanisms are at play at either extreme. These results suggest that the effort required to prevent (or conversely, to facilitate) the establishment of populations varies with the environment in ways that can be complicated but predictable.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"1 ","pages":"Article 100011"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cris.2021.100011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40424930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeynep N. Ulgezen , Coby van Dooremalen , Frank van Langevelde
{"title":"Understanding social resilience in honeybee colonies","authors":"Zeynep N. Ulgezen , Coby van Dooremalen , Frank van Langevelde","doi":"10.1016/j.cris.2021.100021","DOIUrl":"10.1016/j.cris.2021.100021","url":null,"abstract":"<div><p>Honeybee colonies experience high losses, induced by several stressors that can result in the collapse of colonies. Experiments show what effects stressors, such as parasites, pathogens and pesticides, can have on individual honeybees as well as colonies. Although individuals may die, colonies do not always collapse from such disturbances. As a superorganism, the colony can maintain or return back to homeostasis through colony mechanisms. This capacity is defined as social resilience. When the colony faces a high stress load, this may lead to breakdown in mechanisms, loss in resilience and eventually colony collapse. Before social resilience can be measured in honeybees, we need to examine the mechanisms in colonies that allow recovery and maintenance after stressor exposure. Here, we discuss some of these mechanisms and how they affect the social resilience of honeybee colonies. Understanding social resilience in honeybees is essential to managing colony health and loss prevention.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"1 ","pages":"Article 100021"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40424932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marshall W. Ritchie, Jeff W. Dawson, Heath A. MacMillan
{"title":"A simple and dynamic thermal gradient device for measuring thermal performance in small ectotherms","authors":"Marshall W. Ritchie, Jeff W. Dawson, Heath A. MacMillan","doi":"10.1016/j.cris.2020.100005","DOIUrl":"10.1016/j.cris.2020.100005","url":null,"abstract":"<div><p>The body temperature of ectothermic animals is heavily dependent on environmental temperature, impacting fitness. Laboratory exposure to favorable and unfavorable temperatures is used to understand these effects, as well as the physiological, biochemical, and molecular underpinnings of variation in thermal performance. Although small ectotherms, like insects, can often be easily reared in large numbers, it can be challenging and expensive to simultaneously create and manipulate several thermal environments in a laboratory setting. Here, we describe the creation and use of a thermal gradient device that can produce a wide range of constant or varying temperatures concurrently. Conservatively, this system as designed can operate between -6 °C and 40 °C. This device is composed of a solid aluminum plate and copper piping, combined with a pair of refrigerated circulators. As a simple proof-of-concept, we completed single experimental runs to produce a low-temperature survival curve for flies (<em>Drosophila melanogaster</em>) and explore the effects of daily thermal cycles of varying amplitude on growth rates of crickets (<em>Gryllodes sigillatus</em>). This approach avoids the use of multiple heating/cooling water or glycol baths or incubators for large-scale assessments of organismal thermal performance. It makes static or dynamic thermal experiments (e.g., creating a thermal performance or survival curves, quantifying responses to fluctuating thermal environments, or monitoring animal behavior across a range of temperatures) easier, faster, and less costly.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"1 ","pages":"Article 100005"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cris.2020.100005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40653131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}