Advances in Applied Energy最新文献

筛选
英文 中文
Adaptive reinforcement learning for energy management – A progressive approach to boost climate resilience and energy flexibility 用于能源管理的自适应强化学习——一种提高气候适应能力和能源灵活性的渐进方法
IF 13
Advances in Applied Energy Pub Date : 2025-01-22 DOI: 10.1016/j.adapen.2025.100213
Vahid M. Nik , Kavan Javanroodi
{"title":"Adaptive reinforcement learning for energy management – A progressive approach to boost climate resilience and energy flexibility","authors":"Vahid M. Nik ,&nbsp;Kavan Javanroodi","doi":"10.1016/j.adapen.2025.100213","DOIUrl":"10.1016/j.adapen.2025.100213","url":null,"abstract":"<div><div>Energy management in urban areas is challenging due to diverse energy users, dynamics environmental conditions, and the added complexity and instability of extreme weather events. We incorporate adaptive reinforcement learning (ARL) into energy management (EM) and introduce a novel approach, called ARLEM. An online, value-based, model-free ARL engine is designed that updates its policy periodically and partially by replacing less favorable actions with those better adapted to evolving environmental conditions. Multiple policy update mechanisms are assessed, varying based on the frequency and length of updates and the action selection criteria. ARLEM is tested to control the energy performance of typical urban blocks in Madrid and Stockholm considering 17 future climate scenarios for 2040–2069. Each block contains 24 buildings of different types and ages. In Madrid, ARLEM is tested for a summer with two heatwaves and in Stockholm for a winter with two cold waves. Three performance indicators are defined to evaluate the effectiveness and resilience of different control approaches during extreme weather events. ARLEM demonstrates an ability to increase climate resilience in the studied blocks by increasing energy flexibility in the network and reducing both average and peak energy demands while affecting indoor thermal comfort marginally. Since the approach does not require any information about the system dynamics, it is easy to cope with the complexities of building systems and technologies, making it an affordable technology to control large urban areas with diverse types of buildings.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100213"},"PeriodicalIF":13.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding bidding strategies of intermittent renewables in negative price environments: A theoretical and empirical analysis 负电价环境下间歇性可再生能源竞价策略的理论与实证分析
IF 13
Advances in Applied Energy Pub Date : 2025-01-15 DOI: 10.1016/j.adapen.2025.100209
Qinghu Tang , Hongye Guo , Daniel S. Kirschen , Chongqing Kang
{"title":"Understanding bidding strategies of intermittent renewables in negative price environments: A theoretical and empirical analysis","authors":"Qinghu Tang ,&nbsp;Hongye Guo ,&nbsp;Daniel S. Kirschen ,&nbsp;Chongqing Kang","doi":"10.1016/j.adapen.2025.100209","DOIUrl":"10.1016/j.adapen.2025.100209","url":null,"abstract":"<div><div>Negative electricity prices have become increasingly prevalent with the growing penetration of intermittent renewable energy sources worldwide. Although it is widely thought that the negative prices are primarily driven by intermittent renewable energies, the bidding decision theory behind this phenomenon remains underexplored. This paper seeks to illuminate the bidding theory of intermittent renewables under negative electricity prices through not only a theoretical model but also an empirical analysis of its real-world counterpart. First, we propose a comprehensive intermittent renewable bidding decision model considering both forward contract and spot market, as well as income from both the energy market and green energy incentive, which significantly influence bidding behavior under negative price conditions. Next, we develop a data-driven approach to estimate the model’s embedded parameters using publicly available market data, enabling direct comparison with real-world counterparts. Finally, on the basis of the proposed model, we analyze the actual bid records in comparison to the optimal bidding decisions from three perspectives: strategy, behavior, and profit. Empirical results show that the proposed model can explain 80% of the bidding strategies employed by intermittent renewable power plants in a real-world market, including suboptimal strategies. Furthermore, some empirical evidence can help understand the intrinsic relationship between bidding rationality and negative price severity.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100209"},"PeriodicalIF":13.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A newly developed spatially resolved modelling framework for hydrogen valleys: Methodology and functionality 新开发的氢谷空间解析建模框架:方法和功能
IF 13
Advances in Applied Energy Pub Date : 2025-01-05 DOI: 10.1016/j.adapen.2025.100207
Friedrich Mendler , Christopher Voglstätter , Nikolas Müller , Tom Smolinka , Marius Holst , Christopher Hebling , Barbara Koch
{"title":"A newly developed spatially resolved modelling framework for hydrogen valleys: Methodology and functionality","authors":"Friedrich Mendler ,&nbsp;Christopher Voglstätter ,&nbsp;Nikolas Müller ,&nbsp;Tom Smolinka ,&nbsp;Marius Holst ,&nbsp;Christopher Hebling ,&nbsp;Barbara Koch","doi":"10.1016/j.adapen.2025.100207","DOIUrl":"10.1016/j.adapen.2025.100207","url":null,"abstract":"<div><div>Regional initiatives, like the European hydrogen valleys, aim to solve the simultaneous absence of green hydrogen production, infrastructure, and application with coordinated development of the whole supply chain. A new model framework was developed to bridge the gap between linearised energy system models and detailed plant simulations that allows for dynamic, nonlinear simulation and optimisation of regional hydrogen systems from electricity generation to hydrogen application. The model incorporates different supply algorithms for electricity and hydrogen, representing both bilateral contracts and flexible markets. A case study demonstrates the application of the framework within a representative hydrogen valley in Germany, showing how the model can identify optimal configurations of hydrogen production, storage, and distribution infrastructure to minimise the levelized cost of hydrogen. The influence of different spatial resolutions, exchange control algorithms, and boundary conditions chain are evaluated. A too coarse spatial resolution can underestimate system cost by up to 10 % while the allowance of both bilateral hydrogen contracts and a flexible market algorithm can increase hydrogen utilisation and reduce cost by up to 15 %. An autarkic supply of hydrogen demands was possible for 7.60 €/kg, while the option to use grid electricity reduces costs to 6.37 €/kg and the option to import hydrogen to 6.60 €/kg, based on the assumptions for electricity and hydrogen prices. This work contributes to the evolving field of hydrogen economy by providing a sophisticated tool for policymakers and industry stakeholders worldwide to plan and optimise regional hydrogen valleys effectively.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100207"},"PeriodicalIF":13.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting direct-ethane solid oxide fuel cell efficiency with anchored palladium nanoparticles on perovskite-based anode 在钙钛矿基阳极上锚定钯纳米颗粒提高直接乙烷固体氧化物燃料电池效率
IF 13
Advances in Applied Energy Pub Date : 2025-01-05 DOI: 10.1016/j.adapen.2025.100206
Shuo Zhai , Junyu Cai , Idris Temitope Bello , Xi Chen , Na Yu , Rubao Zhao , Xingke Cai , Yunhong Jiang , Meng Ni , Heping Xie
{"title":"Boosting direct-ethane solid oxide fuel cell efficiency with anchored palladium nanoparticles on perovskite-based anode","authors":"Shuo Zhai ,&nbsp;Junyu Cai ,&nbsp;Idris Temitope Bello ,&nbsp;Xi Chen ,&nbsp;Na Yu ,&nbsp;Rubao Zhao ,&nbsp;Xingke Cai ,&nbsp;Yunhong Jiang ,&nbsp;Meng Ni ,&nbsp;Heping Xie","doi":"10.1016/j.adapen.2025.100206","DOIUrl":"10.1016/j.adapen.2025.100206","url":null,"abstract":"<div><div>An efficient anode catalyst for hydrocarbon fuel in Solid Oxide Fuel Cells (SOFC) should possess a stable phase structure, high catalytic efficiency, and excellent coke resistance. However, traditional nickel-based anodes necessitate high steam-to-carbon ratios to prevent coking, complicating system design and reducing the overall performance. In this work, we report a nickel-free PrBaFe<sub>1.9</sub>Pd<sub>0.1</sub>O<sub>5+δ</sub> perovskite as anode material for direct ethane SOFC, which demonstrates superior electroactivity and chemical stability. Under a reducing atmosphere, Pd nano-catalysts exsolved in-situ are uniformly anchored to the perovskite surface. Density functional theory analyses reveal that the Pd exsolution significantly improve ethane adsorption capacity, thereby reducing activation resistance and boosting catalytic performance. When used as an anode for an SDC electrolyte-supported SOFC, superior performance is achieved with the peak power densities (PPDs) of 702 and 377 mW cm<sup>-2</sup> at 800 °C when using hydrogen and almost dry ethane (3% H<sub>2</sub>O) as fuel, respectively. Moreover, the cell exhibits a stable continuous operation over 90 h under almost dry ethane atmosphere at 178 mA cm<sup>−2</sup>, presenting a promising pathway for developing high-performance, nickel-free SOFC anodes that simplify system design and improves efficiency when operating with hydrocarbon fuels, thus holding significant potential for practical SOFC applications.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100206"},"PeriodicalIF":13.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of scalable and privacy-preserving multi-agent frameworks for distributed energy resources 分布式能源可扩展和隐私保护多智能体框架综述
IF 13
Advances in Applied Energy Pub Date : 2024-12-31 DOI: 10.1016/j.adapen.2024.100205
Xiang Huo , Hao Huang , Katherine R. Davis , H. Vincent Poor , Mingxi Liu
{"title":"A review of scalable and privacy-preserving multi-agent frameworks for distributed energy resources","authors":"Xiang Huo ,&nbsp;Hao Huang ,&nbsp;Katherine R. Davis ,&nbsp;H. Vincent Poor ,&nbsp;Mingxi Liu","doi":"10.1016/j.adapen.2024.100205","DOIUrl":"10.1016/j.adapen.2024.100205","url":null,"abstract":"<div><div>Distributed energy resources (DERs) are gaining prominence due to their advantages in improving energy efficiency, reducing carbon emissions, and enhancing grid resilience. Despite the increasing deployment, the potential of DERs has yet to be fully explored and exploited. A fundamental question restrains the management of numerous DERs in large-scale power systems, “<em>How should DER data be securely processed and DER operations be efficiently optimized?</em>” To address this question, this paper considers two critical issues, namely <em>privacy</em> for <em>processing DER data</em> and <em>scalability</em> in <em>optimizing DER operations</em>, then surveys existing and emerging solutions from a multi-agent framework perspective. In the context of scalability, this paper reviews state-of-the-art research that relies on parallel control, optimization, and learning within distributed and/or decentralized information exchange structures, while in the context of privacy, it identifies privacy preservation measures that can be synthesized into the aforementioned scalable structures. Despite research advances in these areas, challenges remain because these highly interdisciplinary studies blend a wide variety of scalable computing architectures and privacy preservation techniques from different fields, making them difficult to adapt in practice. To mitigate this issue, this paper provides a holistic review of trending strategies that orchestrate privacy and scalability for large-scale power system operations from a multi-agent perspective, particularly for DER control problems. Furthermore, this review extrapolates new approaches for future scalable, privacy-aware, and cybersecure pathways to unlock the full potential of DERs through controlling, optimizing, and learning generic multi-agent-based cyber–physical systems.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100205"},"PeriodicalIF":13.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economic viability and CO2 emissions of hydrogen production for ammonia synthesis: A comparative analysis across Europe 氨合成氢生产的经济可行性和二氧化碳排放:欧洲的比较分析
IF 13
Advances in Applied Energy Pub Date : 2024-12-21 DOI: 10.1016/j.adapen.2024.100204
Alessandro Magnino, Paolo Marocco, Massimo Santarelli, Marta Gandiglio
{"title":"Economic viability and CO2 emissions of hydrogen production for ammonia synthesis: A comparative analysis across Europe","authors":"Alessandro Magnino,&nbsp;Paolo Marocco,&nbsp;Massimo Santarelli,&nbsp;Marta Gandiglio","doi":"10.1016/j.adapen.2024.100204","DOIUrl":"10.1016/j.adapen.2024.100204","url":null,"abstract":"<div><div>Ammonia production accounts for 15–20% of greenhouse gas emissions from the chemical sector. Traditionally, ammonia is produced via Steam Methane Reforming (SMR) for hydrogen production, coupled with the Haber-Bosch process. This study compares the SMR-based configuration with emerging alternatives based on water electrolysis – Proton Exchange Membrane Electrolyser Cell (PEMEC) and Solid Oxide Electrolyser Cell (SOEC) – from both economic and CO<sub>2</sub> emissions perspective. Process models for the three plant layouts are developed, incorporating heat integration between different components. The economic results are presented in terms of the levelised cost of ammonia, which accounts for both capital and operating expenses over the plant's lifetime. Sensitivity analyses on electricity and methane prices are conducted to assess the cost-competitiveness of each technology across various scenarios. The outcomes reveal that the optimal technology is highly dependent on electricity prices. PEMEC systems are the most cost-effective option at very low electricity prices (approximately 0.02 €/kWh<sub>e</sub>), while SOEC systems become more competitive as prices rise due to their higher efficiency. Above 0.08 €/kWh<sub>e</sub>, SMR emerges as the most viable option. Special attention is given to the CO<sub>2</sub> emissions from both SMR and electrolyser systems, also considering the carbon intensity of the electricity used. While electrolysis is often assumed to be carbon-free, this research shows that electrolysers can produce more emissions than SMR, depending on the electricity carbon intensity: when carbon intensity exceeds about 260 gCO<sub>2</sub>/kWh<sub>e</sub>, SMR results in lower emissions than the electrolyser-based pathways. Finally, future projections suggest that SOEC technology will become highly cost-competitive by 2030–2040.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100204"},"PeriodicalIF":13.0,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatio-temporal load shifting for truly clean computing 时空负载转移,实现真正的干净计算
IF 13
Advances in Applied Energy Pub Date : 2024-12-19 DOI: 10.1016/j.adapen.2024.100202
Iegor Riepin , Tom Brown , Victor M. Zavala
{"title":"Spatio-temporal load shifting for truly clean computing","authors":"Iegor Riepin ,&nbsp;Tom Brown ,&nbsp;Victor M. Zavala","doi":"10.1016/j.adapen.2024.100202","DOIUrl":"10.1016/j.adapen.2024.100202","url":null,"abstract":"<div><div>Companies operating datacenters are increasingly committed to procuring renewable energy to reduce their carbon footprint, with a growing emphasis on achieving 24/7 Carbon-Free Energy (CFE) matching—eliminating carbon emissions from electricity use on an hourly basis. However, variability in renewable energy resources poses significant challenges to achieving this goal. This study investigates how shifting computing workloads and associated power loads across time and location supports 24/7 CFE matching. We develop an optimization model to simulate a network of geographically distributed datacenters managed by a company leveraging spatio-temporal load flexibility to achieve 24/7 CFE matching. We isolate three signals relevant for informed use of load flexibility: (1) varying average quality of renewable energy resources, (2) low correlation between wind power generation over long distances due to different weather conditions, and (3) lags in solar radiation peak due to Earth’s rotation. Our analysis reveals that datacenter location and time of year influence which signal drives an effective load-shaping strategy. By leveraging these signals for coordinated energy procurement and load-shifting decisions, clean computing becomes both more resource-efficient and cost-effective—the costs of 24/7 CFE are reduced by 1.29 ± 0.07 €/MWh for every additional percentage of flexible load. This study provides practical guidelines for datacenter companies to harness spatio-temporal load flexibility for clean computing. Our results and the open-source optimization model offer insights applicable to a broader range of industries aiming to eliminate their carbon footprints.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100202"},"PeriodicalIF":13.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic reliability assessment framework for integrated energy systems: A new methodology to address cascading failures 综合能源系统的动态可靠性评估框架:解决级联故障的新方法
IF 13
Advances in Applied Energy Pub Date : 2024-12-16 DOI: 10.1016/j.adapen.2024.100203
Lidian Niu , Zeyan Zhao , Jiawei Tan , Tao Liang , Fuzheng Zhang , Ning Xiao , Yi He , Shan Xie , Rui Jing , Jian Lin , Feng Wang , Yingru Zhao
{"title":"A dynamic reliability assessment framework for integrated energy systems: A new methodology to address cascading failures","authors":"Lidian Niu ,&nbsp;Zeyan Zhao ,&nbsp;Jiawei Tan ,&nbsp;Tao Liang ,&nbsp;Fuzheng Zhang ,&nbsp;Ning Xiao ,&nbsp;Yi He ,&nbsp;Shan Xie ,&nbsp;Rui Jing ,&nbsp;Jian Lin ,&nbsp;Feng Wang ,&nbsp;Yingru Zhao","doi":"10.1016/j.adapen.2024.100203","DOIUrl":"10.1016/j.adapen.2024.100203","url":null,"abstract":"<div><div>As the energy internet and integrated energy systems develop, the interconnections among different systems increase operational risks, highlighting the need for urgent reliability research. Recent large-scale blackouts, often caused by cascading failures, reveal that current reliability assessments frequently overlook dynamic equipment conditions and the risk of such failures. Traditional model-driven methods for single energy systems are becoming inadequate due to rapid operational changes. To address these challenges, this study proposes a reliability assessment method for integrated energy systems that considers equipment operational states and cascading failures. It introduces an equipment reliability model for simulating cascading failures due to equipment overloads after initial failures. A hybrid data-model driven approach is proposed to improve the efficiency of load reduction calculations. Then the reliability evaluation is realized by combining the analysis of system energy flow state and index calculation. The modified model simulates more failure events than conventional model and the reliability level reflected by the calculated index is lower than that of the conventional model assessment by 25.39 % to 179.13 %. Evaluation time is reduced by 98.10 % while maintaining an average relative error within 6 %. The subsystem reliability level increases by 69.72 % and decreases by 2.25 % depending on the coupling degree. Failures of less than 20 % of all fault types contributed 43.34 % to 69.59 % of the load reduction. In summary, this model effectively simulates cascading failures from changes in operating states and provides a rapid, accurate reflection of system reliability.Based on this method, the reliability influencing factors can be analyzed and the weak link can be identified.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100203"},"PeriodicalIF":13.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of heat pumps and future energy prices on regional inequalities 热泵和未来能源价格对区域不平等的影响
IF 13
Advances in Applied Energy Pub Date : 2024-12-12 DOI: 10.1016/j.adapen.2024.100201
Jieyang Xu , Sebastian Mosbach , Jethro Akroyd , Markus Kraft
{"title":"Impact of heat pumps and future energy prices on regional inequalities","authors":"Jieyang Xu ,&nbsp;Sebastian Mosbach ,&nbsp;Jethro Akroyd ,&nbsp;Markus Kraft","doi":"10.1016/j.adapen.2024.100201","DOIUrl":"10.1016/j.adapen.2024.100201","url":null,"abstract":"<div><div>The adoption of heat pumps to displace the use of gas for domestic heating is a major component of the strategy to reduce emissions in the UK. This study examines the impact of adopting heat pumps on regional inequalities in the UK. An index is used to assess how variations in household fuel costs could affect regional disparities across different future price scenarios. The findings reveal that, at 2019 prices, most households would face higher heating costs with heat pumps. However, following the 2022 energy price shock, heat pump adoption would lead to lower heating costs for most households compared to gas heating. The effect is sensitive to the electricity-to-gas price ratio, with regions experiencing high fuel poverty being most vulnerable to negative impacts. By mapping these geospatial effects, the study enables the forecasting of future inequality trends, providing insights for informed policy development. The results suggest that, under appropriate price structures, heat pump adoption could contribute to both decarbonisation and reduced social inequality. An example mechanism for financial support to mitigate the impact of adopting heat pumps on inequality is demonstrated. This study highlights the novel capability of The World Avatar (TWA) approach to integrate cross-domain data sets, combining energy policy with social equity goals. By forecasting future inequality trends based on energy price scenarios, the study provides a route to valuable insights to support informed policy development, highlighting how the adoption of heat pumps can influence regional inequalities and emphasising the need for targeted interventions to support vulnerable regions.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100201"},"PeriodicalIF":13.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of hydrogen on decarbonisation and resilience in integrated energy systems 氢对综合能源系统脱碳和恢复力的影响
IF 13
Advances in Applied Energy Pub Date : 2024-11-30 DOI: 10.1016/j.adapen.2024.100200
Hossein Ameli , Danny Pudjianto , Goran Strbac , Nigel P. Brandon
{"title":"The impact of hydrogen on decarbonisation and resilience in integrated energy systems","authors":"Hossein Ameli ,&nbsp;Danny Pudjianto ,&nbsp;Goran Strbac ,&nbsp;Nigel P. Brandon","doi":"10.1016/j.adapen.2024.100200","DOIUrl":"10.1016/j.adapen.2024.100200","url":null,"abstract":"<div><div>The lack of clarity and uncertainty about hydrogen's role, demand, applications, and economics has been a barrier to the development of the hydrogen economy. In this paper, an optimisation model for the integrated planning and operation of hydrogen and electricity systems is presented to identify the role of hydrogen technologies and linepack in decarbonising energy systems, improving system flexibility, and enhancing energy system security and resilience against extreme weather events. The studies are conducted on Great Britain's (GB) 2050 net-zero electricity and gas transmission systems to analyse the hydrogen transport and capacity requirements within the existing infrastructure under different scenarios. This includes sensitivities on the level of flexibility, high gas prices, hydrogen production mixes, enabled reversibility of electrolysers, electricity generation cost, and hydrogen storage facilities. In all sensitivity scenarios, efficient hydrogen transport within the existing infrastructure is enabled by the optimal allocation of green and blue hydrogen sources, distributed storage facilities, and the intra-day flexibility provided by linepack. The findings highlight that increased renewable deployment transfers intermittency to the hydrogen network, requiring greater linepack flexibility compared to the current paradigm (up to 83%). Furthermore, the necessity of synergy between different gas and electricity systems components in providing flexibility, security, and resilience is quantified.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100200"},"PeriodicalIF":13.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信