Advancing building facade solar potential assessment through AIoT, GIS, and meteorology synergy

IF 13 Q1 ENERGY & FUELS
Kechuan Dong , Qing Yu , Zhiling Guo , Jian Xu , Hongjun Tan , Haoran Zhang , Jinyue Yan
{"title":"Advancing building facade solar potential assessment through AIoT, GIS, and meteorology synergy","authors":"Kechuan Dong ,&nbsp;Qing Yu ,&nbsp;Zhiling Guo ,&nbsp;Jian Xu ,&nbsp;Hongjun Tan ,&nbsp;Haoran Zhang ,&nbsp;Jinyue Yan","doi":"10.1016/j.adapen.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>The assessment of building solar potential plays a pivotal role in Building Integrated Photovoltaics (BIPV) and urban energy systems. While current evaluations predominantly focus on rooftop solar resources, a comprehensive analysis of building facade BIPV potential is often lacking. This study presents an innovative methodology that harnesses state-of-the-art Artificial Intelligence of Things (AIoT) techniques, Geographic Information Systems (GIS), and Meteorology to develop a model for accurately estimating spatial–temporal building facade BIPV potential considering 3 Dimension (3D) shading effect. Here, we introduce a zero-shot Deep Learning framework for detailed parsing of facade elements, utilizing cutting-edge techniques in Large-scale Segment Anything Model (SAM), Grounding DINO (Detection Transformer with improved denoising anchor boxes), and Stable Diffusion. Considering urban morphology, 3D shading impacts, and multi-source weather data enables a meticulous estimation of solar potential for each facade element. The experimental findings, gathered from a range of buildings across four countries and an entire street in Japan, highlight the effectiveness and applicability of our approach in conducting comprehensive analyses of facade solar potential. These results underscore the critical importance of integrating shadow effects and detailed facade elements to ensure accurate estimations of PV potential.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100212"},"PeriodicalIF":13.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266679242500006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of building solar potential plays a pivotal role in Building Integrated Photovoltaics (BIPV) and urban energy systems. While current evaluations predominantly focus on rooftop solar resources, a comprehensive analysis of building facade BIPV potential is often lacking. This study presents an innovative methodology that harnesses state-of-the-art Artificial Intelligence of Things (AIoT) techniques, Geographic Information Systems (GIS), and Meteorology to develop a model for accurately estimating spatial–temporal building facade BIPV potential considering 3 Dimension (3D) shading effect. Here, we introduce a zero-shot Deep Learning framework for detailed parsing of facade elements, utilizing cutting-edge techniques in Large-scale Segment Anything Model (SAM), Grounding DINO (Detection Transformer with improved denoising anchor boxes), and Stable Diffusion. Considering urban morphology, 3D shading impacts, and multi-source weather data enables a meticulous estimation of solar potential for each facade element. The experimental findings, gathered from a range of buildings across four countries and an entire street in Japan, highlight the effectiveness and applicability of our approach in conducting comprehensive analyses of facade solar potential. These results underscore the critical importance of integrating shadow effects and detailed facade elements to ensure accurate estimations of PV potential.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信