Journal of Analytical and Applied Pyrolysis最新文献

筛选
英文 中文
Chemical recycling of PC/ABS-blends by pyrolysis
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107047
Philipp-Henry Rathsack , David Scheithauer , Jörg Kleeberg , Martin Gräbner
{"title":"Chemical recycling of PC/ABS-blends by pyrolysis","authors":"Philipp-Henry Rathsack ,&nbsp;David Scheithauer ,&nbsp;Jörg Kleeberg ,&nbsp;Martin Gräbner","doi":"10.1016/j.jaap.2025.107047","DOIUrl":"10.1016/j.jaap.2025.107047","url":null,"abstract":"<div><div>Not all plastics can be recycled mechanically. Polycarbonate (PC) combined with acrylonitrile butadiene styrene (ABS) is one such material used in applications like electronic casings and automotive components. Since mechanical recycling of PC/ABS results in thermal degradation and the loss of required properties, alternative methods are sought. Pyrolysis, the thermal decomposition without oxygen, preferentially cleaves certain bonds, yielding valuable monomers. This study investigates the pyrolysis of non-flame-retarded and flame-retarded PC/ABS blends at laboratory and pilot plant scales. Analyses utilized thermogravimetry and infrared spectroscopy (TG-IR). The blends exhibited two decomposition stages influenced by flame retardants. The IR spectra provided insights into the structural properties of volatile compounds. CO<sub>2</sub> yield ranged from 6 % to 8 %, with the flame-retarded blend showing 0.5–1 % higher yields. Subsequently, we conducted experiments in a fixed-bed reactor, varying the pyrolysis temperature, heating rate, and blend composition. Masses of gaseous, liquid, and solid products were measured, with a liquid yield optimum at 480–500<sup>∘</sup>C. All product fractions were analyzed. Liquid products contained valuable compounds like phenol, styrene, and bisphenol-A, analyzed using gas chromatography (GC) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). For the non-flame-retardant blend, bisphenol-A was the main product (25–30 %), while phenol dominated (10–15 %) in the flame-retardant blend.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107047"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-Raman spectroscopy and Petrography for unraveling the complex heterogeneous physicochemical structures of biochar from the scale of bulk to micro: A comparison and discussion
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107057
Dezhi Chen , Zhou Fang , Yufan Wei , Jun Xu , Kai Xu , Long Jiang , Yi Wang , Sheng Su , Song Hu , Jun Xiang
{"title":"Micro-Raman spectroscopy and Petrography for unraveling the complex heterogeneous physicochemical structures of biochar from the scale of bulk to micro: A comparison and discussion","authors":"Dezhi Chen ,&nbsp;Zhou Fang ,&nbsp;Yufan Wei ,&nbsp;Jun Xu ,&nbsp;Kai Xu ,&nbsp;Long Jiang ,&nbsp;Yi Wang ,&nbsp;Sheng Su ,&nbsp;Song Hu ,&nbsp;Jun Xiang","doi":"10.1016/j.jaap.2025.107057","DOIUrl":"10.1016/j.jaap.2025.107057","url":null,"abstract":"<div><div>This study produced biochar from coconut shells and corncobs through pyrolysis under a nitrogen atmosphere with temperatures ranging from 350℃ to 1400℃. The surface regions of the biochar were characterized at the micro-scale using a combination of micro-Raman spectroscopy and petrography. Extensive data from both methods were compared and correlated from the scale of bulk to micro- levels. The results indicate that for bulk structures, the average random reflectance (R<sub>f</sub>) increases and Raman parameter α decreases with temperature, indicating a higher thermal maturity and lower C-H, C-O etc. structures. However, A<sub>D</sub>/A<sub>G</sub>, A<sub>(VR+VL+GR)</sub>/A<sub>D</sub> and A<sub>(VR+VL+GR)</sub>/A<sub>G</sub> exhibit significant inflection points at specific temperatures. These inflection points are linked to key structural transformations: aromatization at 600 ℃ and graphitization at 1000 ℃. At microscale, biochar contains pores of varying shapes and sizes (approximately 5–100μm) with ash deposits embedded within them. These features significantly influence the heterogeneity in R<sub>f</sub> measurements, resulting in a broaden distribution of R<sub>f</sub> as the pyrolysis process progressed. Besides, micro-Raman spectroscopy shows that biochar particles with higher substituent and side-chain abundances have a tendency towards preferential reactivity. Furthermore, the chemical structural distribution of biochar became more concentrated and focused below 1000 ℃. However, biochar undergoes heterogeneous graphitization at 1000 ℃, and the distribution of aromatic rings and graphite structure becomes even more dispersed between 1000 ℃-1400 ℃. The correlations between the results of petrographic method and micro-Raman at the bulk and micro-scale have been set up and discussed, and it can provide guidance for the comprehensive characterization of the heterogeneous structure of biochar.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107057"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and pyrolysis study of sucrose esters in flue-cured tobacco
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107054
Junchen Zhu , Qi Li , Hairong Yang , Yue Xie , Hongru Feng , Huabing Liu , Boka Xiang , Kailong Yuan , Cuirong Sun , Yuanjiang Pan
{"title":"Analysis and pyrolysis study of sucrose esters in flue-cured tobacco","authors":"Junchen Zhu ,&nbsp;Qi Li ,&nbsp;Hairong Yang ,&nbsp;Yue Xie ,&nbsp;Hongru Feng ,&nbsp;Huabing Liu ,&nbsp;Boka Xiang ,&nbsp;Kailong Yuan ,&nbsp;Cuirong Sun ,&nbsp;Yuanjiang Pan","doi":"10.1016/j.jaap.2025.107054","DOIUrl":"10.1016/j.jaap.2025.107054","url":null,"abstract":"<div><div>Pyrolysis behavior of sucrose esters (SEs) significantly impacts the aroma and quality of cigarettes. However, there is limited research on SEs and their pyrolysis in Flue-cured tobacco. In this study, nine SEs and their three pyrolysis products, glucose esters (GEs), were identified using LC-MS<sup>n</sup>, with six esters being reported in Flue-cured tobacco for the first time. The aging and baking processes of tobacco leaves promoted the pyrolysis of most SEs along with the formation of GEs. During long-term storage at 4 ℃, tobacco SE was found to undergo 3-methylvaleryl intramolecular migration from glucose to fructose as well as intermolecular elimination and addition reaction of acetyl groups, greatly enriching the types of tobacco SEs. By comparing different storage temperatures, this acyl migration demonstrated a temperature dependence. Under simulated cigarette smoking conditions via thermal microwave plasma treatment, SE was rapidly degraded into GE intermediates, fatty acids, furfural, and other aroma compounds. These insights advance our understanding of SE pyrolysis and aroma development, and provide potential explanations for the structural diversity of tobacco SEs.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"189 ","pages":"Article 107054"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal liquefaction of Spanish crude olive pomace for biofuel and biochar production
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107050
Luis Cutz , Sarvesh Misar , Bernat Font , Majd Al-Naji , Wiebren de Jong
{"title":"Hydrothermal liquefaction of Spanish crude olive pomace for biofuel and biochar production","authors":"Luis Cutz ,&nbsp;Sarvesh Misar ,&nbsp;Bernat Font ,&nbsp;Majd Al-Naji ,&nbsp;Wiebren de Jong","doi":"10.1016/j.jaap.2025.107050","DOIUrl":"10.1016/j.jaap.2025.107050","url":null,"abstract":"<div><div>The olive oil industry is an important source of agricultural residues throughout its value chain, ranging from intermediate process slurries to relatively dry content pruning residues. Among them, crude olive pomace (COP) is of particular interest since it is abundant, low cost and can be a promising source for bioenergy. Nevertheless, because COP is phytotoxic and has a high moisture content and low energy density, it represents a challenge to conventional processes that usually require a dry and homogenous material. The main novelty of this study is the use of a transition metal catalyst and a central composite design (CCD) approach to optimize the conversion of COP through hydrothermal liquefaction (HTL) into valuable products. Results show that catalytic HTL is capable of converting up to half of the COP into bio-oil. Higher process temperatures resulted in lower bio-oil yields but larger higher heating value (HHV) and lower N content. The bio-oils produced at higher temperatures also show lower concentration of phenols and regarding biochar, a low inorganic content. Without any further upgrading, COP bio-oils produced by HTL are rich in valuable compounds such as oleic acid, phenolic compounds and ketones that can be used in the polymer industry or as chemical intermediates. The highest bio-oil yield was 51.96 wt% at 330 ºC for 30 min and 7.5 wt% catalyst with a HHV of 22.0 MJ/kg. At those operational conditions, the biochar yield was 16.49 wt% with a HHV of 8.9 MJ/kg. The major minerals found in the biochars (CaO, SiO<sub>2</sub> and P<sub>2</sub>O<sub>5</sub>) suggests that biochar could be well-suited for use in soil applications or as materials for adsorption, especially the non-catalytic ones. Furthermore, the experimental results acquired from HTL of COP were used to develop a global kinetic model. Using an explicit Runge-Kutta method, the kinetic parameters were calculated. After comparing the global kinetic model with a linear system of ordinary differential equations (ODEs) based on the CCD models, results indicate that this approach is more effective in predicting the yields of HTL products.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107050"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the pyrolysis of Agave species as a novel bioenergy source: Thermo-kinetics, modeling, and product composition insights
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107053
Jean Constantino Gomes da Silva , Santiago Arias , José Geraldo A. Pacheco , Fábio Trigo Raya , Gonçalo Amarante Guimarães Pereira , Gustavo Mockaitis
{"title":"Exploring the pyrolysis of Agave species as a novel bioenergy source: Thermo-kinetics, modeling, and product composition insights","authors":"Jean Constantino Gomes da Silva ,&nbsp;Santiago Arias ,&nbsp;José Geraldo A. Pacheco ,&nbsp;Fábio Trigo Raya ,&nbsp;Gonçalo Amarante Guimarães Pereira ,&nbsp;Gustavo Mockaitis","doi":"10.1016/j.jaap.2025.107053","DOIUrl":"10.1016/j.jaap.2025.107053","url":null,"abstract":"<div><div>The <em>Agave</em> economic chain generates a significant waste, which has potential for sustainable bioenergy through pyrolysis. However, the diversity and heterogeneity of chemical composition of <em>Agave</em> species may pose challenges. This study investigates the impact of species heterogeneity on the pyrolysis of three <em>Agave</em> species (<em>Agave sisalana</em>, <em>Agave tequilana</em>, and <em>Agave wercklei</em>), aiming to correlate pyrolysis and biomass properties. Solid characterization and Py-GC/MS were used to understand <em>Agave</em> physicochemical characteristics and organic group distribution in volatiles, respectively. A multi-step model and advanced numerical methods were employed for the kinetic study. The physicochemical characteristics showed similar values but a distinct distribution of inorganic compounds, predominantly composed of alkali and alkaline earth metals (6–11 %<sub>w.b.</sub>), potentially influencing the organic groups’ distribution in the volatiles. High relative areas of aliphatic components (13–28 % at 773 K and 16–36 % at 873 K) and low quantity of acidic groups (&lt;2 %) could be attributed to the catalytic deoxygenation promoted by alkali and alkaline earth metals. These findings are significant for future application of <em>Agave</em> in bio-oil production by pyrolysis, as commercial biomasses often yield a high content of oxygenated and acid groups. For the kinetic study, six decomposition profiles were identified in the pyrolysis, encompassing the decomposition of extractives, saponins, lignocellulose, and oxalate salts. The similarity in profiles resulted in approximately equivalent kinetic parameter values and mechanisms among the species. The average values of <em>E</em><sub><em>a</em></sub> ranged from 71 to 324 kJ mol<sup>−1</sup>, <em>k</em><sub>0</sub> values varied between 10<sup>7</sup>-10<sup>22</sup>, and the reaction mechanisms included n-order and Avrami-Erofeyev types. The validity of the parameters was verified through curve reconstruction. The inorganic composition was chosen as the parameter related to pyrolysis characteristics, as it was the only parameter that differed significantly among the species. Based on the data, normalization and the proposed model demonstrated satisfactory values of <em>R</em>² (&gt;0.9251), <em>QOF</em> (&gt;94 %), and MSE (&lt;2.73 ×10<sup>−3</sup>). This underscores the model's potential to describe decomposition profiles solely based on knowledge of inorganic composition, regardless of selected <em>Agave</em> species.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107053"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of CaO addition on fast pyrolysis behavior of solid waste components using Py GC/MS
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107055
Jun Dong , Yuanjun Tang , Yangqing Hu , Shifeng Wang , Zhaozhi Zhou , Yuxin Shi , Cunen Liu , Fei Wang
{"title":"Effect of CaO addition on fast pyrolysis behavior of solid waste components using Py GC/MS","authors":"Jun Dong ,&nbsp;Yuanjun Tang ,&nbsp;Yangqing Hu ,&nbsp;Shifeng Wang ,&nbsp;Zhaozhi Zhou ,&nbsp;Yuxin Shi ,&nbsp;Cunen Liu ,&nbsp;Fei Wang","doi":"10.1016/j.jaap.2025.107055","DOIUrl":"10.1016/j.jaap.2025.107055","url":null,"abstract":"<div><div>Pyrolysis is a promising approach for treating and recovering solid waste. Herein, we experimentally explored the fast pyrolysis of typical solid waste components, including wood biomass, food waste, and Polyvinyl Chloride (PVC) plastic, using the analytical Pyrolysis Gas Chromatography-Mass Spectrometry (Py GC/MS) technique. The chemical compositions of the volatile organic compounds in pyrolytic tar were detected and compared. The effect of the in-situ addition of calcium oxide (CaO) on the process was also validated. Results showed that different waste components yielded varied pyrolysis products. <em>In-situ</em> CaO addition influenced both the types and relative contents of pyrolysis tar species. The most common products from wood biomass pyrolysis were phenols (24.24 % and 34.87 % without and with CaO addition, respectively) and benzenes (15.77 % and 14.72 % without and with CaO addition, respectively). On the other hand, the most common products from food waste pyrolysis were aldehydes (18.09 % and 3.69 % without and with CaO addition, respectively) and ketones (14.45 % and 33.09 % without and with CaO addition, respectively). The most common products from PVC plastic pyrolysis were benzenes (31.87 % and 28.11 % without and with CaO addition, respectively) and naphthalenes (20.71 % and 25.58 % without and with CaO addition, respectively). During waste pyrolysis, the presence of CaO significantly reduced the formation of acidic compounds, ethers, and aldehydes through decarboxylation and decarbonylation reactions. Regarding the generation of valuable chemicals, the addition of CaO facilitated BTXN synthesis from wood and food waste pyrolytic tar. However, it slightly reduced the relative BTX content from PVC pyrolytic tar. These findings could form the basis for developing resource recovery strategies from solid waste using pyrolysis technology.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107055"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the kinetics and mechanism of thermal decomposition of bisphenol A-type polyarylates
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107040
Zhoufeng Wang , Xiubo Long , Wenlong Yao , Wenchi Zhang , Jinian Yang
{"title":"Study on the kinetics and mechanism of thermal decomposition of bisphenol A-type polyarylates","authors":"Zhoufeng Wang ,&nbsp;Xiubo Long ,&nbsp;Wenlong Yao ,&nbsp;Wenchi Zhang ,&nbsp;Jinian Yang","doi":"10.1016/j.jaap.2025.107040","DOIUrl":"10.1016/j.jaap.2025.107040","url":null,"abstract":"<div><div>Three BPA-type polyarylates (PARS, PARB and PARF) with the same feeding ratio were synthesized by interfacial polymerization by doping three bisphenol A (BPA) derivative monomers (4,4’-sulfobisphenol (BPS), 2,2-bis(4-hydroxy phenyl)butane (BPB) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF)). The kinetics of thermal decomposition of polyarylate was studied by three methods and the activation energies of PARS, PARB and PARF were 198.34, 218.12 and 234.96 kJ/mol, respectively. The thermal stability of the three polyarylates followed PARS &lt; PARB &lt; PARF. Fitted by the integral Master-Plots method, the random nucleation was the pyrolysis mechanism of BPA-type polyarylates. Further elucidation of the pyrolysis process was attained through the deployment of thermogravimetric analysis coupled with Fourier transform infrared spectrometry (TG/FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The study suggested that the pyrolysis pathways of polyarylates were significantly influenced by the properties of their backbone groups; specifically, the breaking weaker bonds (e.g., C–S, C–O) facilitated the initial cleavage of molecular chains. This preliminary disruption then catalyzed further decomposition, forming the reactive radicals that subsequently underwent self-association or isomerization, culminating in new compounds. The effect of BPA-derived monomers on the thermal properties and pyrolytic behaviour of polyarylate was clearly demonstrated in this study.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107040"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete valorization of lignocellulosic biomass through integrated reductive catalytic fractionation and microwave-assisted pyrolysis
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107049
Xu Yang, Jiajun Yu, Mingxun Zeng, Zhicheng Luo, Huiyan Zhang
{"title":"Complete valorization of lignocellulosic biomass through integrated reductive catalytic fractionation and microwave-assisted pyrolysis","authors":"Xu Yang,&nbsp;Jiajun Yu,&nbsp;Mingxun Zeng,&nbsp;Zhicheng Luo,&nbsp;Huiyan Zhang","doi":"10.1016/j.jaap.2025.107049","DOIUrl":"10.1016/j.jaap.2025.107049","url":null,"abstract":"<div><div>Reductive catalytic fractionation (RCF) of lignocellulosic biomass produces phenolic-rich lignin oil and carbohydrate pulp, but catalyst separation is usually required for pulp utilization. This study introduces an integrated process combining RCF with microwave-assisted pyrolysis (RCF-MAP), enabling complete biomass valorization without catalyst separation. Using Ni/AC, RCF generates phenolic-rich lignin oil and high-quality carbohydrate pulp. The RCF-derived carbohydrate pulp can be directly subjected to microwave-assisted pyrolysis, producing syngas yields of 49.5 wt% with a high H<sub>2</sub> to CO ratio of approximately 1:1, suitable for hydroformylation. The Ni/AC catalyst can be recycled back into the MAP process, preventing deactivation seen in conventional thermal pyrolysis. On-line gas analysis revealed that the microwave environment enhances secondary cracking of liquid products, contributing to the hydrogen formation. Mass flow analysis reveals that birch biomass yields approximately 18.9 wt% of lignin oil, 29.6 wt% of syngas (H<sub>2</sub> and CO), 20.1 wt% of bio-oil, and 4.9 wt% of char. This integrated RCF-MAP approach efficiently produces both phenolic chemicals and high-quality syngas, supporting industrial-scale utilization of all biomass fractions.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107049"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Converting biomass tar into N-doped biochar: A promising anode material for enhanced sodium-ion batteries
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107051
Guangxing Wu , Huan Zhang , Xiuqiang Zhang , Qian Guan , Weiwei Zhang , Jia Lu , Weijuan Lan , Zaifeng Li , Shuhua Yang , Hongying Shi
{"title":"Converting biomass tar into N-doped biochar: A promising anode material for enhanced sodium-ion batteries","authors":"Guangxing Wu ,&nbsp;Huan Zhang ,&nbsp;Xiuqiang Zhang ,&nbsp;Qian Guan ,&nbsp;Weiwei Zhang ,&nbsp;Jia Lu ,&nbsp;Weijuan Lan ,&nbsp;Zaifeng Li ,&nbsp;Shuhua Yang ,&nbsp;Hongying Shi","doi":"10.1016/j.jaap.2025.107051","DOIUrl":"10.1016/j.jaap.2025.107051","url":null,"abstract":"<div><div>Intensifying fossil fuel crisis has raised significant attention to the utilization of biomass energy, particularly biomass gasification technology, which is pivotal for its large-scale application. However, the generation of biomass tar during gasification remains a major obstacle. Due to the high carbon content of biomass tar and its compositional and property similarities to coal tar and pitch, this study explores the synthesis of nitrogen-doped biochar by combining urea with biomass tar, and evaluates its potential use as an anode material in sodium-ion batteries. The synthesized material, denoted as NT2–1000 (with a urea-to-biomass tar mass ratio of 2:1 and a carbonization temperature of 1000 °C), exhibited a reversible capacity of 257.49 mAh g<sup>−1</sup> at a current density of 25 mA g<sup>−1</sup>, achieving an initial coulombic efficiency of 59.34 %. After 50 cycles at 50 mA g<sup>−1</sup>, the capacity almost unchanged. At a higher current density of 1000 mA g<sup>−1</sup>, the material retained 70.33 % of its initial capacity of over 200 cycles (122.6 mAh g<sup>−1</sup>), demonstrating excellent rate capability and cycling stability, which is desirable for sodium-ion battery anodes. This research presents a novel method for valorizing carbon from biomass tar, thus promoting the high-value use of waste products generated in energy production processes.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107051"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of hydrothermal and hydrothermal oxidation pretreatment on the physicochemical properties of biochar pellet and activated carbon prepared from biomass wastes
IF 5.8 2区 化学
Journal of Analytical and Applied Pyrolysis Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107007
Sen Lang, Shouyu Zhang, Jifan Yang, Yi Zhou, Zihang Xu, Xiuyuan Han, Jiantian Huang
{"title":"Effect of hydrothermal and hydrothermal oxidation pretreatment on the physicochemical properties of biochar pellet and activated carbon prepared from biomass wastes","authors":"Sen Lang,&nbsp;Shouyu Zhang,&nbsp;Jifan Yang,&nbsp;Yi Zhou,&nbsp;Zihang Xu,&nbsp;Xiuyuan Han,&nbsp;Jiantian Huang","doi":"10.1016/j.jaap.2025.107007","DOIUrl":"10.1016/j.jaap.2025.107007","url":null,"abstract":"<div><div>Hydrothermal (HT) pretreatment and hydrothermal oxidation (HTO) pretreatment can change the internal chemical components of biomass wastes to effectively promote the diversified utilization of the biomass resource and upgrade the quality of terminal productions. In this paper, cotton stalk (CS) and Fir wood sawdust (FS) were pretreated firstly at 160–260 °C to prepare the biochar pellets and activated carbon respectively. The effect of evolution behavior of the three components in CS/FS during HT/HTO process on the physicochemical properties of biochar pellets and activated carbon is explored. The results indicate that HT and HTO pretreatment are beneficial to the quality of biochar pellets and activated carbon. Compared with HT pretreatment, HTO process can effectively alleviate the pretreatment intensity of the preparation of high-quality biochar pellets and activated carbon. HTO pretreatment can promotes the significantly decompositions of cellulose and hemicellulose and aromatization growth of CS/FS. The biochar pellets with higher physical properties can be prepared at the HT temperature of 230 °C and at the HTO temperature of 200 °C respectively, and the physical properties of the samples prepared from FS basically higher than CS. Crystalline cellulose is the main contributor to the physical property of biochar pellets. The HHV of biochar pellets prepared from pretreated FS is basically higher than CS, and the cellulose is responsible for the increasing HHV. HT and HTO pretreatment can significantly improve the energy density of CS/FS samples, and the apparent density has the crucial effect on the energy density than HHV. The increasing of cellulose content is conductive to the improvement of combustion performance of biochar pellets, while recondensed lignin in FS prepared by HTO process also has the higher HHV and combustion performance. The total yield of resulted samples was affected by the combination of pretreatment yield and activation yield. Compared with the direct activation, the total yield of pretreated CS activated carbon prepared by HT and HTO pretreatment could up to 166.6 % and 118.4 % respectively, and 189.8 % and 118.9 % for FS samples. CS is the more excellent precursor to prepare high-quality activated carbon than FS. Compared with HT pretreatment, the higher specific surface area and adsorption capacity of resulted activated carbon can be obtained by HTO process, in which the iodine adsorption value of CS-HTO180-A and CS-HTO200-A meet the China standard of activated carbon for water purification (GB/T 13803.2–1999).</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107007"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143479589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信