{"title":"Metabolite differences and molecular mechanism between dehiscent and indehiscent capsule of mature sesame","authors":"Yinping Zhang , Ruirui Chen , Yujun Liu , Shuwen Xu , Shuguang Gao , Haiyang Zhang , Hongmei Miao , Lingling Qin , Xiangyu Zhou , Kiran Thakur , Cheng Li , Juan Li , Pengcheng Wei , Zhao-Jun Wei","doi":"10.1016/j.fochms.2024.100231","DOIUrl":"10.1016/j.fochms.2024.100231","url":null,"abstract":"<div><div>The loss of sesame capsule seed prior to harvest poses a significant economical challenge in mechanized production. The metabolites involved in capsule closure are still unclear. Using comparative metabolome and transcriptome analysis, this work investigated the molecular regulation and enrichment pathways in two sesame types of indehiscent capsule WanZhi28 (ND) and dehiscent capsule WanZhi2 (WZ2). The findings demonstrated that genes and metabolites were significantly enriched in lignin synthesis-related pathways. Furthermore, data suggests that lipid and sugar metabolism may have an impact on capsule closure. Apart from its function in cell signaling, the latter may contribute to the glycosylation of lignin monomers, while the former may provide ATP for cellular microtubule movement. This work concurrently focused on a large number of differentially expressed transcription factors linked to the sesame capsule's anti-cleft mechanism, providing new evidence for the discovery and use of functional markers and genes for capsule dehiscence. The identification of key pathways and regulatory mechanisms offers valuable information for developing strategies to mitigate seed loss during harvest, ultimately contributing to more efficient and profitable sesame production.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100231"},"PeriodicalIF":4.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingkui Shi , Wenxin Xie , Yanmei Sun , Qingyu Shi , Xin Xing , Qingguo Wang , Qingqing Li
{"title":"Calcium chloride connects potato greening and enzymatic browning through salicylic acid","authors":"Jingkui Shi , Wenxin Xie , Yanmei Sun , Qingyu Shi , Xin Xing , Qingguo Wang , Qingqing Li","doi":"10.1016/j.fochms.2024.100229","DOIUrl":"10.1016/j.fochms.2024.100229","url":null,"abstract":"<div><div>Greening and enzymatic browning are important factors causing post-harvest losses in potatoes. Although they are two different biological processes, there are some common inhibitors between them. Whether there is a correlation between the two has yet to be studies. In this research, we conducted transcriptome analysis of non-greening and greening potatoes, identifying several browning-related genes (polyphenol oxidase genes and peroxidase genes). Compared to non-greening potatoes, greening potatoes exhibited a greater browning degree. And calcium chloride (CaCl<sub>2</sub>) can inhibit both greening and enzymatic browning. However, the inhibitory effect on potatoes was weakened when treated simultaneously with SA synthesis inhibitor and CaCl<sub>2</sub>, indicating that CaCl<sub>2</sub> can regulate potato greening and browning by affecting internal SA synthesis. Additionally, exogenous SA treatment of potato tubers can also inhibit enzymatic browning. Our study not only demonstrated that CaCl<sub>2</sub> and SA can serve as a bridge connecting the potato greening and enzymatic browning, but also provided important references for the development of novel co-inhibitors.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100229"},"PeriodicalIF":4.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Wang , Haitao Guan , Xiaolei Zhang , Changjun Dai , Cuiling Wang , Guofeng Chen , Kun Li , Zhenhua Xu , Ruiying Zhang , Baohai Liu , Hongtao Wen
{"title":"Metabonomic and transcriptomic profiling reveals amino acid metabolism affects the quality of premium japonica rice varieties in Northeast China","authors":"Jing Wang , Haitao Guan , Xiaolei Zhang , Changjun Dai , Cuiling Wang , Guofeng Chen , Kun Li , Zhenhua Xu , Ruiying Zhang , Baohai Liu , Hongtao Wen","doi":"10.1016/j.fochms.2024.100230","DOIUrl":"10.1016/j.fochms.2024.100230","url":null,"abstract":"<div><div>Rice consumption and demand for premium rice are increasing worldwide. However, the characterizations and how to identify the premium rice are still unclear. Small molecular metabolites have a great advantage in distinguishing subtle differences among similar agricultural products. So, we hypothesized that the metabolites would be the key to identifying the tiny differences in premium rice among similar varieties. In this study, we performed metabolomic and transcriptomic profiles to comprehensively elucidate key metabolites, genes, and formation mechanisms of premium rice. As a result, eight compounds belong to four categories, and 49 different expressional genes were identified in premium rice varieties after comparing with the second-best varieties. Moreover, the integrated analysis confirmed that the amino acid pathway, including 42 expression genes and 11 metabolites, was critical for the premium rice formation. Six genes and two metabolites had significant regulatory effects on the pathways. Furthermore, amino acid quantification confirmed the content of 12 kinds of hydrolytic amino acids, such as aspartic acid and arginine were different between premium and other varieties. These amino acids may serve as potential biomarkers for differentiating premium rice in Northeast China. Our results strongly support the possibility of differentiating premium rice and would provide essential data for premium rice identification and metabolomics-assisted breeding.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100230"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Zhang , Yi Zhang , Shuaiyu Zou , Endian Yang , Ziyi Lei , Tingting Xu , Chen Feng
{"title":"Characterization of the aroma and flavor profiles of guava fruit (Psidium guajava) during developing by HS-SPME-GC/MS and RNA sequencing","authors":"Jie Zhang , Yi Zhang , Shuaiyu Zou , Endian Yang , Ziyi Lei , Tingting Xu , Chen Feng","doi":"10.1016/j.fochms.2024.100228","DOIUrl":"10.1016/j.fochms.2024.100228","url":null,"abstract":"<div><div>The flavor of guava, an important tropical fruit, is influenced by secondary metabolites. However, the mechanisms and processes underlying flavor formation in guava remain unclear. In this study, dynamic changes in volatile organic compounds (VOCs), sugars, and organic acids in guava peel and flesh across different developmental stages were investigated using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography (HPLC). Here, we identified 90 VOCs, three sugars and eight organic acids. The dynamics of VOCs differ between the flesh and peel. The early developmental stages are more critical in influencing the variation of VOCs in the flesh, while VOC changes in peel occur more progressively across the developmental stages. By integrating transcriptomic and metabolomic analyses, we identified several key genes involved in VOC, sugar, and acid metabolism. This is the first study to describe the expression patterns of these genes throughout guava development, providing new insights into guava flavor development.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100228"},"PeriodicalIF":4.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liangyu Wu , Xiaolan Chen , Jiaqi Lin , Hongzheng Lin , Ningkai Liao , Chenxue Li , Yunfei Hu , Yun Sun
{"title":"Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production","authors":"Liangyu Wu , Xiaolan Chen , Jiaqi Lin , Hongzheng Lin , Ningkai Liao , Chenxue Li , Yunfei Hu , Yun Sun","doi":"10.1016/j.fochms.2024.100227","DOIUrl":"10.1016/j.fochms.2024.100227","url":null,"abstract":"<div><div>To elucidate the formation of characteristic aroma over enzymatic-catalyzed processes (ECP), GC–MS-based volatile-metabolomic combined with desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) were employed to analyze the changes of volatile organic compounds (VOCs) in Tieguanyin tea. A total of 579 VOCs were obtained, from which 24 components involved in five pathways were identified as biomarkers. Among these, four VOCs including 2-furancarboxylic acid, 4-methylbenzaldehyde, N-benzylformamide, cuminaldehyde, were detected in both DESI-MSI and GC–MS analysis, exhibiting dynamic changes along processing steps. RNA-sequencing analysis indicated the genes referring to stress response were activated during tea processing, facilitating the accumulation of flora-fruity aroma in tea leaf. Metabolic pathways analysis revealed that the increase in floral-fruity related components such as volatile terpenoids, phenylpropanoids/benzenoids, indole, alongside a decrease in green leaf volatiles including (<em>E</em>)-2-Hexenal, (<em>Z</em>)-3-Hexenol, played a crucial role in development of characteristic aroma, which could be a feasible index for evaluating processing techniques or quality of oolong tea.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100227"},"PeriodicalIF":4.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm","authors":"Heri Septya Kusuma , Atna Sabita , Najla Anira Putri , Nadhira Azliza , Nafisa Illiyanasafa , Handoko Darmokoesoemo , Andrew Nosakhare Amenaghawon , Tonni Agustiono Kurniawan","doi":"10.1016/j.fochms.2024.100225","DOIUrl":"10.1016/j.fochms.2024.100225","url":null,"abstract":"<div><div>The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100225"},"PeriodicalIF":4.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fazira Latib Ratib, Muhamad Arif Irfan Zafendi, Mohd Aizuddin Mohd Lazaldin
{"title":"The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma","authors":"Fazira Latib Ratib, Muhamad Arif Irfan Zafendi, Mohd Aizuddin Mohd Lazaldin","doi":"10.1016/j.fochms.2024.100224","DOIUrl":"10.1016/j.fochms.2024.100224","url":null,"abstract":"<div><div>Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E’s role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100224"},"PeriodicalIF":4.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combining widely targeted metabolomics and RNA-sequencing to reveal the function analysis of Phyllanthus emblica Linn. Juice-induced poultry macrophages","authors":"Chenggang Liu, Jin jin, Binyi Sun","doi":"10.1016/j.fochms.2024.100223","DOIUrl":"10.1016/j.fochms.2024.100223","url":null,"abstract":"<div><div>This study explored the functional effects of cultivated and wild <em>Phyllanthus emblica</em> Linn juice (PEJ) in HD11 poultry macrophage lines, with the aim of potentially developing cultivated PE and its fruit residue as poultry feed additives. RNA-Seq was used to evaluate the functional differences between cultivated and wild PEJ induced HD11 cells. Both cultivated and wild PEJ could regulate cell replication by histone H1/H2 family genes and host immune response by Toll-like receptor 7 regulation. Wild PEJ inhibited M1-type polarization of host macrophages, while cultivated PEJ promoted M2-type polarization. Metabolites of cultivated and wild PE were identified by widely targeted metabolomics based on liquid chromatography-tandem mass spectrometry. Of the 911 metabolites, 238 differed functionally between cultivated and wild PE. The data provide a theoretical basis for the subsequent development of PE as a functional feed additive in poultry.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100223"},"PeriodicalIF":4.1,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Ma , Xiao Wang , Lei Chen , Lixing Yuan , Fanrong Cui , Zongsheng Zhao , Xiangmin Yan
{"title":"Multi-omics analysis reveals flavor differences in Xinjiang brown beef with varying intramuscular fat contents","authors":"Zhen Ma , Xiao Wang , Lei Chen , Lixing Yuan , Fanrong Cui , Zongsheng Zhao , Xiangmin Yan","doi":"10.1016/j.fochms.2024.100220","DOIUrl":"10.1016/j.fochms.2024.100220","url":null,"abstract":"<div><p>Beef flavor plays a crucial role in consumer preference, yet research on this trait has been limited by past technological constraints. Intramuscular fat (IMF) is a key determinant of beef quality, influencing taste, marbling, and overall flavor. Xinjiang brown cattle (XBC), an indigenous breed from northern Xinjiang, China, presents significant variation in meat quality, with IMF content ranging from 0.2 % to 4.3 % within the population. This variation suggests strong potential for breeding improvement. In this study, we selected 82 XBC for slaughter and meat quality analysis, categorizing them based on IMF content. Using two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC-TOF MS), we analyzed volatile flavor compounds across different beef cuts (Longissimus dorsi, Semitendinosus, Supraspinatus). Our results showed that beef with higher IMF levels exhibited enhanced flavor profiles, characterized by sweet, green, fruity, and waxy notes, while castrated bulls displayed the weakest flavor intensity. Metabolomic analysis further revealed significant differences in flavor substances between high and low IMF content beef. RNA-Seq analysis identified key genes (AQP4, FZD2, FADS1, BPG1, CEBPD, FABP4) associated with flavor formation, offering valuable insights for breeding strategies aimed at improving XBC meat quality. This comprehensive study provides a robust theoretical foundation for advancing the genetic improvement of XBC.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100220"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566224000273/pdfft?md5=e4634b88178b149ea17e1977655674e4&pid=1-s2.0-S2666566224000273-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Die Zhao , Chunji Li , Nan Zeng , Dandan Wang , Guohui Yu , Ning Zhang , Bingxue Li
{"title":"Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR","authors":"Die Zhao , Chunji Li , Nan Zeng , Dandan Wang , Guohui Yu , Ning Zhang , Bingxue Li","doi":"10.1016/j.fochms.2024.100221","DOIUrl":"10.1016/j.fochms.2024.100221","url":null,"abstract":"<div><div>Carotenoids, a family of lipid-soluble pigments, have garnered growing interest for their health-promoting benefits and are widely utilized in the food, feed, pharmaceutical, and cosmetic industries. <em>Rhodosporidiobolus odoratu</em>s, a representative oleaginous red yeast, is considered a promising alternative for producing high-value carotenoids including β-carotene, torulene, and torularhodin. Here, the impact of varying concentrations of NaCl treatments on carotenoid contents in <em>R. odoratus</em> XQR after 120 h of incubation was examined. The results indicated that, as compared to the control (59.37 μg/g<sub>dw</sub>), the synthesis of total carotenoids was significantly increased and entirely suppressed under low-to-moderate (0.25 mol/L: 68.06 μg/g<sub>dw</sub>, 0.5 mol/L: 67.62 μg/g<sub>dw</sub>, and 0.75 mol/L: 146.47 μg/g<sub>dw</sub>) and high (1.0, 1.25, and 1.5 mol/L: 0 μg/g<sub>dw</sub>) concentrations of NaCl treatments, respectively. Moreover, the maximum production of β-carotene (117.62 μg/g<sub>dw</sub>), torulene (21.81 μg/g<sub>dw</sub>), and torularhodin (7.04 μg/g<sub>dw</sub>) was achieved with a moderate concentration (0.75 mol/L) of NaCl treatment. Transcriptomic and metabolomic analyses suggested that the increase in β-carotene, torulene, and torularhodin production might be primarily attributed to the up-regulation of some key protein-coding genes involved in the terpenoid backbone biosynthesis (<em>atoB</em>, <em>HMGCS</em>, and <em>mvaD</em>), carotenoid biosynthesis (<em>crtYB</em> and <em>crtI</em>), and TCA cycle (<em>pckA</em>, <em>DLAT, pyc, MDH1</em>, <em>gltA</em>, <em>acnA</em>, <em>IDH1/2</em>, <em>IDH3</em>, <em>sucA</em>, <em>sucB</em>, <em>sucD</em>, <em>LSC1</em>, <em>SDHA</em>, and <em>fumA/fumB</em>). The present study not only demonstrates a viable method to concurrently increase the production of β-carotene, torulene, torularhodin, and total carotenoids in <em>R. odoratus</em> XQR, but it also establishes a molecular foundation for further enhancing their production through genetic engineering.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100221"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}