{"title":"综合转录组学和代谢组学分析揭示了棉籽蛋白质和油脂变异的驱动因素","authors":"Chaoze Zhou , Yiwen Huang , Dayu Zhou , Yuzhen Wu , Shouyang Fu , Longyu Huang , Jun Peng , Meng Kuang","doi":"10.1016/j.fochms.2025.100270","DOIUrl":null,"url":null,"abstract":"<div><div>The protein and oil content in cottonseed, known for their high quality, exhibits substantial variation across different cotton varieties. This study explored the regulatory mechanisms behind these differences by analyzing protein and oil accumulation patterns, transcriptomics, and metabolomics in two cotton varieties during seed development. Results showed that protein and oil rapidly accumulated between 15 and 30 days post-anthesis (DPA), but significant differences between varieties emerged after 40 DPA. Differentially expressed genes (DEGs) at 40 DPA were enriched in carbon allocation, fatty acid degradation, and nitrogen absorption pathways. Metabolomics identified lipids, lipid-like molecules, and organic acids as key differentially accumulated metabolites (DAMs). Furthermore, the gene <em>GhNIR1</em>, associated with nitrogen source absorption, was identified. Virus-induced gene silencing (VIGS) of this gene in cotton resulted in a significant reduction in protein content in the roots, stems, and leaves. These findings provide insights into protein and oil accumulation and offer genetic resources for improving cottonseed nutritional quality.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"11 ","pages":"Article 100270"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptomic and metabolomic analysis reveals drivers of protein and oil variation in cottonseed\",\"authors\":\"Chaoze Zhou , Yiwen Huang , Dayu Zhou , Yuzhen Wu , Shouyang Fu , Longyu Huang , Jun Peng , Meng Kuang\",\"doi\":\"10.1016/j.fochms.2025.100270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The protein and oil content in cottonseed, known for their high quality, exhibits substantial variation across different cotton varieties. This study explored the regulatory mechanisms behind these differences by analyzing protein and oil accumulation patterns, transcriptomics, and metabolomics in two cotton varieties during seed development. Results showed that protein and oil rapidly accumulated between 15 and 30 days post-anthesis (DPA), but significant differences between varieties emerged after 40 DPA. Differentially expressed genes (DEGs) at 40 DPA were enriched in carbon allocation, fatty acid degradation, and nitrogen absorption pathways. Metabolomics identified lipids, lipid-like molecules, and organic acids as key differentially accumulated metabolites (DAMs). Furthermore, the gene <em>GhNIR1</em>, associated with nitrogen source absorption, was identified. Virus-induced gene silencing (VIGS) of this gene in cotton resulted in a significant reduction in protein content in the roots, stems, and leaves. These findings provide insights into protein and oil accumulation and offer genetic resources for improving cottonseed nutritional quality.</div></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"11 \",\"pages\":\"Article 100270\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566225000310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566225000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Integrated transcriptomic and metabolomic analysis reveals drivers of protein and oil variation in cottonseed
The protein and oil content in cottonseed, known for their high quality, exhibits substantial variation across different cotton varieties. This study explored the regulatory mechanisms behind these differences by analyzing protein and oil accumulation patterns, transcriptomics, and metabolomics in two cotton varieties during seed development. Results showed that protein and oil rapidly accumulated between 15 and 30 days post-anthesis (DPA), but significant differences between varieties emerged after 40 DPA. Differentially expressed genes (DEGs) at 40 DPA were enriched in carbon allocation, fatty acid degradation, and nitrogen absorption pathways. Metabolomics identified lipids, lipid-like molecules, and organic acids as key differentially accumulated metabolites (DAMs). Furthermore, the gene GhNIR1, associated with nitrogen source absorption, was identified. Virus-induced gene silencing (VIGS) of this gene in cotton resulted in a significant reduction in protein content in the roots, stems, and leaves. These findings provide insights into protein and oil accumulation and offer genetic resources for improving cottonseed nutritional quality.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.