{"title":"MEMS with five senses for IRT","authors":"I. Shimoyama","doi":"10.1109/MHS.2009.5352101","DOIUrl":"https://doi.org/10.1109/MHS.2009.5352101","url":null,"abstract":"IRT is a new technological domain created by the integration of Information Technology (IT), which encompasses high-speed computing and network and software technologies, and Robot Technology (RT), whose forms and movements function in the physical world. IT, formed from technologies of the cyber-world, has the power to process information in the real world through communication and computer technologies. It promises to have even more advanced capabilities in the future. RT, formed from the technologies of the physical world, has advanced greatly in reliability and real-world functionality. By integration IT and RT, IRT innovations promise to give birth to industries that support life and society, and to bring about social transformation. One of the killer applications of IRT is a kitchen robot. The robot we have developed has tactile sensors to deal with plates and glasses on a tray and put them into a dishwasher. The tactile sensors are molded by elastic materials with tiny cantilevers in it. Not only tactile sensors but also vision/acoustic sensors are necessary for motion, safety and reliability of household robots. MEMS (MicroElectroMechanical Systems) give tiny/thin sensor arrays which cover a robot as smart skin.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"354 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134085464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Tang, M. Gosálvez, P. Pal, S. Itoh, H. Hida, M. Shikida, Kazuo Sato
{"title":"Adsorbed surfactant thickness on: A Si wafer dominating etching properties of TMAH solution","authors":"B. Tang, M. Gosálvez, P. Pal, S. Itoh, H. Hida, M. Shikida, Kazuo Sato","doi":"10.1109/MHS.2009.5352098","DOIUrl":"https://doi.org/10.1109/MHS.2009.5352098","url":null,"abstract":"The goal of this article is to study the etching properties as a function of various adsorbed surfactant thickness in wet anisotropic etching process of TMAH solution. The thickness of preferentially adsorbed surfactant molecules on Si{110} and Si{100} has been evaluated by using spectroscopic ellipsometry (SE). The dependence of the etch rate in TMAH and the surface roughness on the layer thickness demonstrates that the surfactant is adsorbed at the interface during etching in TMAH+Triton. A thin pre-adsorbed layer is sufficient to dramatically improve the etching characteristics of silicon.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129647657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Matsuno, M. Nakajima, M. Kojima, Y. Tanaka-Takiguchi, K. Takiguchi, K. Nogawa, M. Homma, T. Fukuda
{"title":"Pico-liter injection control to individual nano-liter solution coated by lipid layer","authors":"Y. Matsuno, M. Nakajima, M. Kojima, Y. Tanaka-Takiguchi, K. Takiguchi, K. Nogawa, M. Homma, T. Fukuda","doi":"10.1109/MHS.2009.5351948","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351948","url":null,"abstract":"This paper presents the evaluation of ultra-minimal spout amount from micro-nano pipettes into phospholipid-coated micro-droplets. The pipettes can be used to control the local environment around/inside single cells. Conventionally, the microinjection with pipette has been conducted by air pressures. In this method, the spout of high viscosity solutions is difficult because of the frictional forces between the surface of a pipette and a solution. It is also needed to evaluate the spout amount quantitatively. On the other hand, the research about artificial cell model has been actively conducted, injecting various biological samples into liposomes which are vesicle of lipid bilayer membrane. If additional injection of various proteins into liposome is realized with micro/nano pipette, the observation of dynamic reaction of multiple biological samples, which is required for formulation of artificial cell, will become possible. In our research, the spouting method using electro-osmosis is used. The local spouts of the proteins such as GFP and F-actin have been presented experimentally before. In this paper, the amount of spout solution in this method is quantitatively evaluated by injection of fluorescent solution into a phospholipid-coated micro-droplet.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129731761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Bui, D. Dao, K. Nakamura, T. Toriyama, S. Sugiyama
{"title":"Characterization of the piezoresistive effect and temperature coefficient of resistance in single crystalline silicon nanowires","authors":"T. Bui, D. Dao, K. Nakamura, T. Toriyama, S. Sugiyama","doi":"10.1109/MHS.2009.5351972","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351972","url":null,"abstract":"This paper reports the design, fabrication and evaluation of piezoresistive effect of the top-down fabricated p-type <110> Si Nanowires (SiNWs). The SiNWs with the length of 2µm, thickness of 35nm and width ranges from 35nm to 490nm have been fabricated by electron beam (EB) direct writing and reactive ion etching (RIE). The impurity concentration of the SiNWs is 2×1018 cm−3, obtained by ion implantation. The SiNWs are protected by a thermally grown SiO2 to avoid the environment influence and to deactivate the outer layer, which was attacked during RIE process. Dependence of piezoresistive effects on the width of the SiNWs of both longitudinal and transverse SiNWs has been characterized. The significant increasing had been found in longitudinal piezoresistive coefficient πl[110]. The results showed that when the width of the SiNWs reduces to nanometer size, the smaller the width, the bigger the piezoresistive coefficient. The coefficient πl[110] along <110> crystallographic orientation increased up to 60% when the width of SiNWs down from 490nm to 35nm. Furthermore, rather small influence of temperature to piezoresistive coefficient has been characterized. Piezoresistive effect slightly decreases when the temperature increases. The temperature coefficient of resistance (TCR) of the SiNWs has been measured to be from 450 to 850ppm/°C, i.e. about 8 times smaller than that of bulk silicon at same doping concentration. These excellent characteristics are important for high sensitive and low-temperature-affected mechanical sensors.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132042446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Itoyama, T. Nakano, S. Ikeda, T. Fukuda, T. Matsuda, M. Negoro, F. Arai
{"title":"Fabrication of biodegradable scaffold by powder sintering process","authors":"T. Itoyama, T. Nakano, S. Ikeda, T. Fukuda, T. Matsuda, M. Negoro, F. Arai","doi":"10.1109/MHS.2009.5351879","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351879","url":null,"abstract":"To reproduce blood vessel, we proposed new process for fabricating biodegradable scaffold by powder sintering process. In this process, model for molding scaffold was materialized by rapid prototyping. Biodegradable polymer powder and porogen were dusted to model and heated. So, arbitrary shape scaffold would be fabricated. Also, porosity that influences compliance of blood vessel scaffold would be adjusted by changing ratio of the polymer powder and porogen. We studied fabrication condition of blood vessel scaffold by measuring porosity and Young's modulus when the ratio of the polymer powder and porogen was adjusted. Also, HUVECs were cultured on the scaffold, and the scaffold's biocompatibility was confirmed.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115318067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of evolutionary and self-assembling robot-organisms","authors":"P. Levi","doi":"10.1109/MHS.2009.5352063","DOIUrl":"https://doi.org/10.1109/MHS.2009.5352063","url":null,"abstract":"Symbiotic robotics is a discipline within collective robotics that is concerned with artificial multi-cellular robot-organisms that define their morphological structure by aggregation through self-assembling and they are also able to disaggregate afterwards. This contribution is concerned to the description of evolutionary and cognitive principles that governs such a symbiotic cycle to build artificial organisms of different forms and operate with them. The evolutionary approach starts with a artificial genome, will be continued by the insertion of different types of regulative cycles, and ends up in an embryogenetic formed body. Hereby there is differentiation between the genetic based learning and the fitness based learning. Further there are dominant differences between multi-cellular organism and structured cooperative aggregations of swarm members. The cognitive approach is focused on cognitive maps, on cognitive sensor data fusion and finally to the definition of information that governs the the process of organism formation and body survival in a given environment. This more engineering oriented approach is used to build all HW-components and all kinds of embedded “operating systems” to control and to operate symbiotic robot organisms.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130721777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Manipulating behaviors of targeted single cells in vivo by using IR-LEGO","authors":"Motoshi Suzuki, Y. Kamei, S. Yuba, S. Takagi","doi":"10.1109/MHS.2009.5351899","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351899","url":null,"abstract":"Methods for turning on/off gene expression at any desired time and place in vivo would be useful for analyzing various biological processes. We have developed a novel microscopic system utilizing an infrared laser, IR-LEGO (infrared-laser evoked gene operator), which is designed to deposit heat locally in living organisms. We have shown that IR-LEGO enables us to induce the heat shock response efficiently in targeted single cells of C. elegans worms, thereby driving expression of a transgene under the control of a heat shock promoter. By using IR-LEGO we attempted to rescue several mutant phenotypes of worms at the single-cell level. Diverse cell behaviors including differentiation and migration of target cells can be manipulated by gene induction mediated by IR-LEGO. Our results showed that IR-LEGO can be used to manipulate cell-autonomous as well as cell-nonautonomous behaviors, further confirming that irradiation using IR-LEGO has no harmful effects on the targets. Thus, IR-LEGO serves as valuable tools for manipulating biological processes in living organisms.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130773479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of the maskless photolithography device with an LCD-projector for fabrication of micropatterned surfaces","authors":"K. Itoga, J. Kobayashi, M. Yamato, T. Okano","doi":"10.1109/MHS.2009.5351890","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351890","url":null,"abstract":"We developed the maskless photolithography device by modifying the optical system of an LCD projector and applied to cell micropatterning and fabrication of microchannels. Furthermore, we also developed the second-generation device allows for the fabrication of micropatterns over a larger area (over 50 × 50 mm). The maskless system has the big merit that doesn't need a photomask. However, there are a few problems in the maskless system. One of them is that patterns of segmentalized boundaries with an XY stage get out of shape. It is caused by optical distortion, precision of XY stage and so on. To overcome the defect, we have developed a third-generation device equipped with a more precision XY-stage and invented a method to improve patterns of divided edge by multiphase exposure. We were able to improve patterns of divided edge by the method.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122745718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Mizunuma, Y. Yamanishi, S. Sakuma, H. Maruyama, F. Arai
{"title":"On-chip particle-laden droplet dispensing by disposable inkjet system","authors":"T. Mizunuma, Y. Yamanishi, S. Sakuma, H. Maruyama, F. Arai","doi":"10.1109/MHS.2009.5351878","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351878","url":null,"abstract":"We succeeded in dispensing micro-droplet by a disposable on-chip inkjet mechanism. Novelty of this paper is summarized as follows. (1) We employed a glass plate bonded Poly-dimethylsiloxane (PDMS) membrane to obtain leaf spring structure whose spring coefficient is 14 times of the conventional PDMS membrane. As a result, we succeeded in dispensing droplets continuously (up to 10 Hz) by vibrating the membrane using the multilayers piezoelectric actuator attached to the PDMS disposable chip. (2) The nozzle for droplet dispensing was fabricated by thick photoresist (SU-8) to obtain the hydrophobic surface which prevents any undesired satellite droplets produced. Consequently the accuracy of position of the droplet dispensing was achieved ± 5 μm. The size of the droplet produced from the disposable nozzle (diameter = 100 μm) was in the range of 95–105 μm at the applied voltage of 105 V.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124553712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microactuator using tensile thin film","authors":"M. Sasaki","doi":"10.1109/MHS.2009.5351764","DOIUrl":"https://doi.org/10.1109/MHS.2009.5351764","url":null,"abstract":"The thin film is advantageous for preparing the compliant spring and structures with little mass. The surface micromachining can take these advantages. Since the film structures suffer from the bending generated by the stress imbalance inside, the bulk micromachining is now frequently used. When the tensile stress is introduced in the thin film combining with bulk micromachining, the structural robustness will be obtained. As for the torsion bar, the compliant spring performance can be obtained for the twisting motion keeping the rigidity against the other motions. The potentials are indicated with the micromirror. The performances of the low-voltage driving, temperature stability, possibility for increasing the resonant frequency by decreasing the mass of the moving element, and the wireless driving using the subtle energy generated by the electromagnetic induction are confirmed.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124162808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}