Joule最新文献

筛选
英文 中文
Technoeconomic analysis of perovskite/silicon tandem solar modules 过氧化物/硅串联太阳能模块的技术经济分析
IF 39.8 1区 材料科学
Joule Pub Date : 2024-11-15 DOI: 10.1016/j.joule.2024.10.013
Jacob J. Cordell, Michael Woodhouse, Emily L. Warren
{"title":"Technoeconomic analysis of perovskite/silicon tandem solar modules","authors":"Jacob J. Cordell, Michael Woodhouse, Emily L. Warren","doi":"10.1016/j.joule.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.013","url":null,"abstract":"Tandem photovoltaic (PV) modules offer an opportunity to improve the efficiency and energy yield of available solar resources compared with single-junction devices. We present a cost model and sensitivity analysis of perovskite/silicon (Si) tandem modules to understand how design choices impact overall module costs. We find a minimum sustainable price (MSP) of $0.428/W<sub>DC</sub> for our baseline two-terminal design and $0.423/W<sub>DC</sub> for our baseline four-terminal design, each at a module efficiency of 25% and module production of 3 GW per year in the United States. We find that the choice of Si cell architecture, overall module efficiency, and factory throughput have the most significant impacts on cost and competitiveness. The dynamic model provided is designed for researchers, companies, and interested individuals to use and edit as needed to better understand the trade-offs among PV module technologies and enable targeted research to improve module design and fabrication.","PeriodicalId":343,"journal":{"name":"Joule","volume":"38 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promising excitonic absorption for efficient perovskite solar cells 有望实现激子吸收的高效过氧化物太阳能电池
IF 39.8 1区 材料科学
Joule Pub Date : 2024-11-12 DOI: 10.1016/j.joule.2024.10.012
Biao Li, Yuxin Yao, Chenxia Kan, Pengjie Hang, Jiangsheng Xie, Qixin Yin, Daoyong Zhang, Xuegong Yu, Deren Yang
{"title":"Promising excitonic absorption for efficient perovskite solar cells","authors":"Biao Li, Yuxin Yao, Chenxia Kan, Pengjie Hang, Jiangsheng Xie, Qixin Yin, Daoyong Zhang, Xuegong Yu, Deren Yang","doi":"10.1016/j.joule.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.012","url":null,"abstract":"Tuning the band gap of perovskites toward the ideal band gap enables the enhancement of the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Here, we demonstrate that the optical band-gap narrowing can be achieved by employing the excitonic absorption in perovskites through tuning their exciton binding energy (<em>E</em><sub>b</sub>), which directly leads to a photocurrent gain and hence improves the PCE of PSCs. With combined theoretical and experimental studies, it is revealed that the <em>E</em><sub>b</sub> is deeply correlated with the density of vacancy defects in perovskites due to their potential screening effect. Using the precursor engineering, we enhance the <em>E</em><sub>b</sub> by decreasing the density of vacancy defects in perovskites films. As a result, the improved excitonic absorption in formamidinium lead iodide (FAPbI<sub>3</sub>) obviously broadens the spectral response and thus boosts the efficiency of the champion PSC up to 26.31% (certified 26.09%), mainly due to an enhanced photocurrent.","PeriodicalId":343,"journal":{"name":"Joule","volume":"64 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De-doping engineering for efficient and heat-stable perovskite solar cells 去掺杂工程实现高效、热稳定的过氧化物太阳能电池
IF 39.8 1区 材料科学
Joule Pub Date : 2024-11-12 DOI: 10.1016/j.joule.2024.10.011
Yun Seop Shin, Ji Won Song, Dong Gyu Lee, Jaehwi Lee, Jongdeuk Seo, Jina Roe, Gwang Yong Shin, Dongshin Kim, Jiwoo Yeop, Dongmin Lee, Minjin Kim, Yimhyun Jo, Hyungsu Jang, Jung Geon Son, Woojin Lee, Jeongmin Son, Sujung Park, Shinuk Cho, Tae Joo Shin, Gi-Hwan Kim, Dong Suk Kim
{"title":"De-doping engineering for efficient and heat-stable perovskite solar cells","authors":"Yun Seop Shin, Ji Won Song, Dong Gyu Lee, Jaehwi Lee, Jongdeuk Seo, Jina Roe, Gwang Yong Shin, Dongshin Kim, Jiwoo Yeop, Dongmin Lee, Minjin Kim, Yimhyun Jo, Hyungsu Jang, Jung Geon Son, Woojin Lee, Jeongmin Son, Sujung Park, Shinuk Cho, Tae Joo Shin, Gi-Hwan Kim, Dong Suk Kim","doi":"10.1016/j.joule.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.011","url":null,"abstract":"In conventional n-i-p perovskite solar cells, unsolved issues persist, particularly concerning notorious performance degradation under prolonged heat exposure at 85°C. By reducing the concentration of 4-<em>tert</em>-butylpyridine (<em>t</em>BP) and lithium bis(trifluoromethanesulfonyl)imide and adjusting their molar ratio to one, we achieved a dramatic increase in the heat stability of the PSC while boosting its power conversion efficiency (PCE). The formation of a 1:1 Li<sup>+</sup>-<em>t</em>BP complex was crucial for preventing free <em>t</em>BP molecules in the hole-transporting layer (HTL), suppressing the de-doping of the p-type HTL by <em>t</em>BP and the release of <em>t</em>BP vapor under heat stress. Consequently, the PSCs accomplished a PCE of 26.18% (certified 26.00%) while demonstrating remarkable resilience to heat exposure at 85°C due to the raised glass transition temperature of the HTL. Furthermore, a perovskite solar mini-module with an aperture area of 25 cm<sup>2</sup> achieved a PCE of 23.29%, highlighting their potential for commercial PSC deployment.","PeriodicalId":343,"journal":{"name":"Joule","volume":"17 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV 原位掺铋实现开路电压超过 900 mV 的高效碲化镉薄膜太阳能电池
IF 39.8 1区 材料科学
Joule Pub Date : 2024-11-08 DOI: 10.1016/j.joule.2024.09.013
Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan
{"title":"Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV","authors":"Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan","doi":"10.1016/j.joule.2024.09.013","DOIUrl":"https://doi.org/10.1016/j.joule.2024.09.013","url":null,"abstract":"The focus of CdSeTe thin-film solar cell doping has transitioned from copper (Cu) doping to group V doping. <em>In situ</em> group V doping has resulted in a new record power conversion efficiency (PCE) of 23.1%, with open-circuit voltages (V<sub>OC</sub>s) exceeding the 900 mV mark. Here, we report that <em>ex situ</em> bismuth (Bi)-doped CdSeTe thin-film solar cells show V<sub>OC</sub>s exceeding 900 mV and a champion PCE of 20.6%. Characterizations revealed that the Se-rich CdSeTe region near the front junction promotes Bi ions to occupy the anion sites and dope this region weakly p-type. Bi ions in the CdTe-dominating back surface region occupy the cation sites and are oxidized. This <em>ex situ</em> Bi doping with BiF<sub>3</sub> as a dopant precursor offers several advantages, including simplicity, high tolerance to the processing environment, and no requirement of additional Cd vapor or special activation processes, making it highly adaptable for researchers to explore efficient Bi-doped CdSeTe thin-film solar cells.","PeriodicalId":343,"journal":{"name":"Joule","volume":"33 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electro-biodiesel empowered by co-design of microorganism and electrocatalysis 通过微生物和电催化的共同设计实现电生物柴油
IF 39.8 1区 材料科学
Joule Pub Date : 2024-10-31 DOI: 10.1016/j.joule.2024.10.001
Kainan Chen, Peng Zhang, Yayun Chen, Chengcheng Fei, Jiali Yu, Jiahong Zhou, Yuanhao Liang, Weiwei Li, Sisi Xiang, Susie Y. Dai, Joshua S. Yuan
{"title":"Electro-biodiesel empowered by co-design of microorganism and electrocatalysis","authors":"Kainan Chen, Peng Zhang, Yayun Chen, Chengcheng Fei, Jiali Yu, Jiahong Zhou, Yuanhao Liang, Weiwei Li, Sisi Xiang, Susie Y. Dai, Joshua S. Yuan","doi":"10.1016/j.joule.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.001","url":null,"abstract":"Efficient and sustainable energy production is essential for climate change mitigation, yet current approaches like biofuels or electro-fuels have limitations in efficiency and product profile. We advanced a new electro-biodiesel route via integrating electrocatalysis and bioconversion to produce lipids from CO<sub>2</sub> for biodiesel. We first revealed bioenergetic and metabolic limits in C2+ intermediate utilization through simulations and metabolomics, guiding the synthetic biology design to achieve reductant balance, more ATP production, efficient lipid conversion, and higher lipid yield. Furthermore, we discovered specific ratios of ethanol and acetate to achieve co-substrate synergy, empowering bimetallic catalyst design to improve bioconversion efficiency. The microbial and catalyst co-design achieved a solar-energy-to-molecule conversion efficiency of 4.5% for CO<sub>2</sub>-to-lipid conversion. Electro-biodiesel leverages the high efficiency of electrocatalysis and longer-carbon-chain products from microbial lipid synthesis, overcoming the limitations for both electrocatalysis and bioconversion. Electro-biodiesel achieved 45 times less land usage than soybean biodiesel, competitive economics, and substantial carbon emission reduction.","PeriodicalId":343,"journal":{"name":"Joule","volume":"126 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electro-controlled distribution of reducing equivalents to boost isobutanol biosynthesis in microbial electro-fermentation of S. oneidensis 电控还原当量分配促进 S. oneidensis 微生物电发酵中的异丁醇生物合成
IF 39.8 1区 材料科学
Joule Pub Date : 2024-10-30 DOI: 10.1016/j.joule.2024.10.005
Huan Yu, Feng Li, Yuxuan Wang, Chaoning Hu, Baocai Zhang, Chunxiao Qiao, Qijing Liu, Zixuan You, Junqi Zhang, Liang Shi, Haichun Gao, Kenneth H. Nealson, Hao Song
{"title":"Electro-controlled distribution of reducing equivalents to boost isobutanol biosynthesis in microbial electro-fermentation of S. oneidensis","authors":"Huan Yu, Feng Li, Yuxuan Wang, Chaoning Hu, Baocai Zhang, Chunxiao Qiao, Qijing Liu, Zixuan You, Junqi Zhang, Liang Shi, Haichun Gao, Kenneth H. Nealson, Hao Song","doi":"10.1016/j.joule.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.005","url":null,"abstract":"Efficient and directional supply of reducing equivalents is crucial for high-yield production of desired chemicals. Herein, an engineered isobutanol-producing <em>Shewaenlla oneidensis</em> was modularly constructed by assembling the electro-controlled distribution system of reducing equivalents and the isobutanol biosynthesis pathway. A dual-stage isobutanol electro-fermentation process was first established, including +0.5 V for cell growth and −0.6 V for isobutanol synthesis. Then, a redox biosensor-based dynamic regulation system was constructed to further decouple cell growth and isobutanol synthesis phases, enabling efficient supply of reducing equivalents. Lastly, an electro-controlled CRISPRi transcription inhibition system was designed to inhibit competitive metabolic pathways, which led to directional distribution of reducing equivalents and carbon flux toward isobutanol biosynthesis. Thus, the titer of isobutanol reached 1,321.5 ± 106.8 mg/L, a 10.8-fold increase from the original strain with 94.9% of the theoretical yield. This study achieved electro-controlled directional distribution of reducing equivalents and enhanced biosynthesis of reductive products via microbial electro-fermentation.","PeriodicalId":343,"journal":{"name":"Joule","volume":"29 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributions and evolution of trap states in non-fullerene organic solar cells 非富勒烯有机太阳能电池中阱态的分布与演化
IF 39.8 1区 材料科学
Joule Pub Date : 2024-10-30 DOI: 10.1016/j.joule.2024.10.006
Yunjie Dou, Siwei Luo, Pengchen Zhu, Liangxiang Zhu, Guangye Zhang, Chunxiong Bao, He Yan, Jia Zhu, Shangshang Chen
{"title":"Distributions and evolution of trap states in non-fullerene organic solar cells","authors":"Yunjie Dou, Siwei Luo, Pengchen Zhu, Liangxiang Zhu, Guangye Zhang, Chunxiong Bao, He Yan, Jia Zhu, Shangshang Chen","doi":"10.1016/j.joule.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.006","url":null,"abstract":"The photovoltaic performance of non-fullerene organic solar cells (OSCs) is essentially determined by the presence of charge traps. However, their exact distributions in OSCs have remained unclear. Here, we report the successful profiling of spatial and energetic distributions of trap states via the drive-level capacitance profiling (DLCP) method. Our DLCP results unveil that the trap densities at device interfaces are 1 to 2 orders of magnitude greater than those of the film interior, and improving film crystallinity helps reduce trap density. Furthermore, the DLCP method enables <em>operando</em> monitoring of trap evolution during OSC operation, which reveals that trap evolution is strongly correlated with film morphology stability. The OSCs with stable morphology show minimal changes in trap distributions and can operate for 500 h without significant efficiency loss. With this method, we establish the correlations between trap distributions/evolution and device efficiency/stability and provide insightful guidance toward more efficient and stable OSCs.","PeriodicalId":343,"journal":{"name":"Joule","volume":"12 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-ligand redox in layered oxide cathodes for Li-ion batteries 锂离子电池层状氧化物阴极中的金属-配体氧化还原作用
IF 39.8 1区 材料科学
Joule Pub Date : 2024-10-30 DOI: 10.1016/j.joule.2024.10.007
Matthew J.W. Ogley, Ashok S. Menon, Gaurav C. Pandey, Galo J. Páez Fajardo, Beth J. Johnston, Innes McClelland, Veronika Majherova, Steven Huband, Debashis Tripathy, Israel Temprano, Stefano Agrestini, Veronica Celorrio, Gabriel E. Pérez, Samuel G. Booth, Clare P. Grey, Serena A. Cussen, Louis F.J. Piper
{"title":"Metal-ligand redox in layered oxide cathodes for Li-ion batteries","authors":"Matthew J.W. Ogley, Ashok S. Menon, Gaurav C. Pandey, Galo J. Páez Fajardo, Beth J. Johnston, Innes McClelland, Veronika Majherova, Steven Huband, Debashis Tripathy, Israel Temprano, Stefano Agrestini, Veronica Celorrio, Gabriel E. Pérez, Samuel G. Booth, Clare P. Grey, Serena A. Cussen, Louis F.J. Piper","doi":"10.1016/j.joule.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.007","url":null,"abstract":"This study refutes the commonly used ionic-bonding model that demarcates transition metal (TM) and oxygen redox using an archetypal Ni-rich layered oxide cathode, LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>. Here, charge compensation during delithiation occurs without formal (ionic) Ni oxidation. Instead, oxygen-dominated states control the redox process, facilitated by strong TM-O hybridization, forming bulk-stable 3d<sup>8</sup><u>L</u> and 3d<sup>8</sup><u>L</u><sup>2</sup> electronic states, where <u>L</u> is a ligand hole. Bulk O–O dimers are observed with O K-edge resonant inelastic X-ray scattering but, critically, without the long-range TM migration or void formation observed in Li-rich layered oxides. Above 4.34 V vs. Li<sup>+</sup>/Li, the cathode loses O, forming a resistive surface rock-salt layer that causes capacity fade. This highlights the importance of cathode engineering when attempting to achieve higher energy densities with layered oxide cathodes, especially in those where O dominates the charge compensation mechanism.","PeriodicalId":343,"journal":{"name":"Joule","volume":"6 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing charge-emitting shallow traps in metal halide perovskites by >100 times by surface strain 通过表面应变将金属卤化物过氧化物中的电荷发射浅陷阱提高 >100 倍
IF 39.8 1区 材料科学
Joule Pub Date : 2024-10-25 DOI: 10.1016/j.joule.2024.10.004
Ying Zhou, Hengkai Zhang, Yeming Xian, Zhifang Shi, Jean Noalick Aboa, Chengbin Fei, Guang Yang, Nengxu Li, Farida A. Selim, Yanfa Yan, Jinsong Huang
{"title":"Enhancing charge-emitting shallow traps in metal halide perovskites by >100 times by surface strain","authors":"Ying Zhou, Hengkai Zhang, Yeming Xian, Zhifang Shi, Jean Noalick Aboa, Chengbin Fei, Guang Yang, Nengxu Li, Farida A. Selim, Yanfa Yan, Jinsong Huang","doi":"10.1016/j.joule.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.004","url":null,"abstract":"The low density of deep trapping defects in metal halide perovskites (MHPs) is essential for high-performance optoelectronic devices. Shallow traps in MHPs are speculated to enhance charge recombination lifetime. However, chemical nature and distribution of these shallow traps as well as their impact on solar cell operation remain unknown. Herein, we report that shallow traps are much richer in MHPs than traditional semiconductors, and their density can be enhanced by &gt;100 times through local surface strain, indicating that shallow traps are mainly located at the surface. The surface strain is introduced by anchoring two-amine-terminated molecules onto formamidinium cations, and the shallow traps are formed by the band edge downshifting toward defect levels. The high-density shallow traps temporarily hold one type of charge and increased the concentration of the other type of free carrier in working solar cells by keeping photogenerated charges from bimolecular recombination, resulting in a reduced open-circuit voltage loss to 317 mV.","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directional regulation on single-molecule redox-targeting reaction in neutral zinc-iron flow batteries 中性锌-铁液流电池中单分子氧化还原定向反应的定向调节
IF 39.8 1区 材料科学
Joule Pub Date : 2024-10-22 DOI: 10.1016/j.joule.2024.09.015
Yichong Cai, Hang Zhang, Tidong Wang, Shibo Xi, Yuxi Song, Sida Rong, Jin Ma, Zheng Han, Chee Tong John Low, Qing Wang, Ya Ji
{"title":"Directional regulation on single-molecule redox-targeting reaction in neutral zinc-iron flow batteries","authors":"Yichong Cai, Hang Zhang, Tidong Wang, Shibo Xi, Yuxi Song, Sida Rong, Jin Ma, Zheng Han, Chee Tong John Low, Qing Wang, Ya Ji","doi":"10.1016/j.joule.2024.09.015","DOIUrl":"https://doi.org/10.1016/j.joule.2024.09.015","url":null,"abstract":"Aqueous redox flow batteries (ARFBs) are promising long-duration energy storage systems but struggle with low-energy density due to the inherent properties of liquid electrolytes. Herein, we report a [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>-LiMn<sub>x</sub>Fe<sub>1 − x</sub>PO<sub>4</sub>/Zn flow battery utilizing redox-targeting (RT) electrochemical-chemical loop, exhibiting an outstanding energy density of 118.3 Wh L<sup>−1</sup>, surpassing blank RFB by 5.6 times. Remarkably, the RT reaction between redox mediator [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup> and solid energy booster LiMn<sub>x</sub>Fe<sub>1 − x</sub>PO<sub>4</sub> is directionally regulated, clearly revealing the quantitative relation between capacity enhancement and potential difference. Moreover, unprecedented Coulombic efficiency (99.9%), solid booster utilization (78.4%), and capacity retention (99.8% per cycle) are achieved at 10 mA cm<sup>−2</sup>. Intriguingly, <em>operando</em> synchrotron X-ray absorption spectroscopy unveils the reversible changes of the Fe–O and Fe–Fe bonds in the [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>-LiMn<sub>x</sub>Fe<sub>1 − x</sub>PO<sub>4</sub> RT system during real-time monitoring. This work suggests an appealing way for capacity enhancement in ARFBs and provides profound insight into the fundamental chemistry of the RT reaction in safe, energy-dense batteries.","PeriodicalId":343,"journal":{"name":"Joule","volume":"25 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信