Grant A. King, Rahel Wettstein, Joseph M. Varberg, Keerthana Chetlapalli, M. E. Walsh, Ludovic C. Gillet, Claudia Hernandez-Armenta, P. Beltrão, R. Aebersold, S. Jaspersen, Joao Matos, E. Ünal
{"title":"Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization","authors":"Grant A. King, Rahel Wettstein, Joseph M. Varberg, Keerthana Chetlapalli, M. E. Walsh, Ludovic C. Gillet, Claudia Hernandez-Armenta, P. Beltrão, R. Aebersold, S. Jaspersen, Joao Matos, E. Ünal","doi":"10.1101/2022.04.14.488376","DOIUrl":"https://doi.org/10.1101/2022.04.14.488376","url":null,"abstract":"Nuclear pore complexes (NPCs) are large proteinaceous assemblies that mediate nuclear compartmentalization. NPCs undergo largescale structural rearrangements during mitosis in metazoans and some fungi. However, our understanding of NPC remodeling beyond mitosis remains limited. Using time-lapse fluorescence microscopy, we discovered that NPCs undergo two mechanistically-separable remodeling events during budding yeast meiosis whereby parts or all of the nuclear basket transiently dissociate from the NPC core during meiosis I and II, respectively. Meiosis I detachment, observed for Nup60 and Nup2, is driven by Polo kinase-mediated phosphorylation of Nup60 at its interface with the Y-complex. Subsequent reattachment of Nup60-Nup2 to the NPC core is mediated by a lipid-binding amphipathic helix in Nup60. Preventing Nup60-Nup2 reattachment causes misorganization of the entire nuclear basket in gametes. Strikingly, meiotic nuclear basket remodeling also occurs in the distantly related fission yeast, Schizosaccharomyces pombe. Our study reveals a conserved and developmentally programmed aspect of NPC plasticity, providing key mechanistic insights into nuclear basket organization. SUMMARY King and Wettstein et al. reveal that nuclear pore complexes undergo two distinct remodeling events during budding yeast meiosis: partial and full nuclear basket detachment. By dissecting the regulation of these events, the study provides mechanistic insights into NPC organization.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121080202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongfei Xu, Fei Chang, Shweta Jain, B. A. Heller, Xu Han, Yongjian Liu, R. Edwards
{"title":"SNX5 targets a monoamine transporter to the TGN for assembly into dense core vesicles by AP-3","authors":"Hongfei Xu, Fei Chang, Shweta Jain, B. A. Heller, Xu Han, Yongjian Liu, R. Edwards","doi":"10.1083/jcb.202106083","DOIUrl":"https://doi.org/10.1083/jcb.202106083","url":null,"abstract":"The endosomal adaptor protein AP-3 assembles the membrane proteins of dense core vesicles (DCVs). Sorting nexin 5 targets the vesicular monoamine transporter (VMAT) to DCVs by retrograde transport from endosomes to the trans-Golgi network (TGN), thereby revealing a novel role for AP-3 at the TGN.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126573448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiping Liu, Wei Lin, Spencer R Leibow, Alexander J Morateck, Malini Ahuja, S. Muallem
{"title":"TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1","authors":"Haiping Liu, Wei Lin, Spencer R Leibow, Alexander J Morateck, Malini Ahuja, S. Muallem","doi":"10.1083/jcb.202107120","DOIUrl":"https://doi.org/10.1083/jcb.202107120","url":null,"abstract":"PI(4,5)P2, a key lipid at ER/PM junctions, has multiple roles in regulating TRPC channels, which includes recruitment of the channel to the junctions to facilitate activation by receptor stimulation, channel pore opening, and channel ionic selectivity.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"427-429 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124029925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jieqiong Gao, Raffaele Nicastro, Marie-Pierre Péli-Gulli, Sophie Grziwa, Zilei Chen, Rainer Kurre, J. Piehler, C. De Virgilio, F. Fröhlich, C. Ungermann
{"title":"The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity","authors":"Jieqiong Gao, Raffaele Nicastro, Marie-Pierre Péli-Gulli, Sophie Grziwa, Zilei Chen, Rainer Kurre, J. Piehler, C. De Virgilio, F. Fröhlich, C. Ungermann","doi":"10.1083/jcb.202109084","DOIUrl":"https://doi.org/10.1083/jcb.202109084","url":null,"abstract":"Gao et al. show that an endosomal population carrying the TORC1 signaling complex, which they term signaling endosomes (SEs), requires the HOPS tethering complex and MVB biogenesis for their formation and identity and for efficient TORC1 signaling.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127312509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Vásquez-Limeta, Kimberly Lukasik, Dong Kong, Catherine Sullenberger, Delgermaa Luvsanjav, Natalie Sahabandu, R. Chari, J. Loncarek
{"title":"CPAP insufficiency leads to incomplete centrioles that duplicate but fragment","authors":"A. Vásquez-Limeta, Kimberly Lukasik, Dong Kong, Catherine Sullenberger, Delgermaa Luvsanjav, Natalie Sahabandu, R. Chari, J. Loncarek","doi":"10.1083/jcb.202108018","DOIUrl":"https://doi.org/10.1083/jcb.202108018","url":null,"abstract":"Vasquez-Limeta et al. use human cells engineered for fast degradation of centrosomal protein CPAP. Using superresolution microscopy, they show that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that convert to centrosomes and duplicate, but fragment owing to loss of cohesion between microtubule blades.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128003599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes","authors":"A. Marivin, R. Ho, M. Garcia-Marcos","doi":"10.1083/jcb.202111002","DOIUrl":"https://doi.org/10.1083/jcb.202111002","url":null,"abstract":"Marivin et al. show how association of the protein DAPLE with PAR polarity complexes at cell–cell junctions maintains an apical cytoskeletal network in epithelial cells by simultaneously activating heterotrimeric G proteins and recruiting the actin-stabilizing protein CD2AP.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117057897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin.","authors":"Yuma Cho, Daichi Haraguchi, Kenta Shigetomi, Kenji Matsuzawa, Seiichi Uchida, Junichi Ikenouchi","doi":"10.1083/jcb.202009037","DOIUrl":"https://doi.org/10.1083/jcb.202009037","url":null,"abstract":"<p><p>The epithelial cell sheet functions as a barrier to prevent invasion of pathogens. It is necessary to eliminate intercellular gaps not only at bicellular junctions, but also at tricellular contacts, where three cells meet, to maintain epithelial barrier function. To that end, tight junctions between adjacent cells must associate as closely as possible, particularly at tricellular contacts. Tricellulin is an integral component of tricellular tight junctions (tTJs), but the molecular mechanism of its contribution to the epithelial barrier function remains unclear. In this study, we revealed that tricellulin contributes to barrier formation by regulating actomyosin organization at tricellular junctions. Furthermore, we identified α-catenin, which is thought to function only at adherens junctions, as a novel binding partner of tricellulin. α-catenin bridges tricellulin attachment to the bicellular actin cables that are anchored end-on at tricellular junctions. Thus, tricellulin mobilizes actomyosin contractility to close the lateral gap between the TJ strands of the three proximate cells that converge on tricellular junctions.</p>","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e0/83/JCB_202009037.PMC8847807.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39910649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaleh S Mesgarzadeh, Joel N Buxbaum, R Luke Wiseman
{"title":"Stress-responsive regulation of extracellular proteostasis.","authors":"Jaleh S Mesgarzadeh, Joel N Buxbaum, R Luke Wiseman","doi":"10.1083/jcb.202112104","DOIUrl":"https://doi.org/10.1083/jcb.202112104","url":null,"abstract":"<p><p>Genetic, environmental, and aging-related insults can promote the misfolding and subsequent aggregation of secreted proteins implicated in the pathogenesis of numerous diseases. This has led to considerable interest in understanding the molecular mechanisms responsible for regulating proteostasis in extracellular environments such as the blood and cerebrospinal fluid (CSF). Extracellular proteostasis is largely dictated by biological pathways comprising chaperones, folding enzymes, and degradation factors localized to the ER and extracellular space. These pathways limit the accumulation of nonnative, potentially aggregation-prone proteins in extracellular environments. Many reviews discuss the molecular mechanisms by which these pathways impact the conformational integrity of the secreted proteome. Here, we instead focus on describing the stress-responsive mechanisms responsible for adapting ER and extracellular proteostasis pathways to protect the secreted proteome from pathologic insults that challenge these environments. Further, we highlight new strategies to identify stress-responsive pathways involved in regulating extracellular proteostasis and describe the pathologic and therapeutic implications for these pathways in human disease.</p>","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39819022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"mTORC2 suppresses cell death induced by hypo-osmotic stress by promoting sphingomyelin transport.","authors":"Yumiko Ono, Kenji Matsuzawa, Junichi Ikenouchi","doi":"10.1083/jcb.202106160","DOIUrl":"https://doi.org/10.1083/jcb.202106160","url":null,"abstract":"<p><p>Epithelial cells are constantly exposed to osmotic stress. The influx of water molecules into the cell in a hypo-osmotic environment increases plasma membrane tension as it rapidly expands. Therefore, the plasma membrane must be supplied with membrane lipids since expansion beyond its elastic limit will cause the cell to rupture. However, the molecular mechanism to maintain a constant plasma membrane tension is not known. In this study, we found that the apical membrane selectively expands when epithelial cells are exposed to hypo-osmotic stress. This requires the activation of mTORC2, which enhances the transport of secretory vesicles containing sphingomyelin, the major lipid of the apical membrane. We further show that the mTORC2-Rab35 axis plays an essential role in the defense against hypotonic stress by promoting the degradation of the actin cortex through the up-regulation of PI(4,5)P2 metabolism, which facilitates the apical tethering of sphingomyelin-loaded vesicles to relieve plasma membrane tension.</p>","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/ac/JCB_202106160.PMC8952684.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40315968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Pande, N. Mitra, S. Bagde, R. Srinivasan, P. Gayathri
{"title":"Filament organization of the bacterial actin MreB is dependent on the nucleotide state","authors":"V. Pande, N. Mitra, S. Bagde, R. Srinivasan, P. Gayathri","doi":"10.1083/jcb.202106092","DOIUrl":"https://doi.org/10.1083/jcb.202106092","url":null,"abstract":"Through the characterization of Spiroplasma MreB5, Pande et al. show that MreB5 exhibits a nucleotide-dependent allosteric effect on filament dynamics and membrane binding. The results highlight the conserved and distinct features of MreBs in shape determination, independent of peptidoglycan synthesis machinery.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"1068 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132751189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}