{"title":"Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry","authors":"Alma Mathew, M. Lacey, D. Brandell","doi":"10.33774/chemrxiv-2021-2kgjv","DOIUrl":"https://doi.org/10.33774/chemrxiv-2021-2kgjv","url":null,"abstract":"Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability is a key parameter to consider. The conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone, and carbonate-sulfone mixtures, all with LiPF6 salt, tested for a potential profile equivalent to LiNi0.5Mn1.5O4 electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42650612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes","authors":"Matthew Greenwood , Marc Wentker , Jens Leker","doi":"10.1016/j.powera.2021.100055","DOIUrl":"10.1016/j.powera.2021.100055","url":null,"abstract":"<div><p>Nickel-rich cathode active materials (CAMs) and silicon-graphite composite anodes promise substantial lithium-ion battery (LIB) performance increases over state-of-the-art technologies. In order to compete with current LIB technologies, however, they must also be producible at a cost competitive with that of their predecessors. In this paper, full pouch cells based on state-of-the-art and prospective future CAMs are modeled using both graphite and silicon-graphite composite anodes to examine each technology's performance. Current open-market material costs are then utilized to estimate the costs of producing each cell. The two are then related to determine each cell's value on a USD kWh<sup>−1</sup> basis. Future nickel-rich CAMs are shown to provide a strong performance advantage over current technologies, especially if their laboratory-scale performance can be replicated at a commercial scale. Silicon-graphite anodes likewise display performance gains, though these are shown to be highly dependent on cell chemistry and design. The collected current open-market prices of the materials needed to produce these technologies, however, are shown to be too high to result in a value improvement. Cost reductions necessary to achieve value parity with current technologies are thus calculated and possible future developments are discussed.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"9 ","pages":"Article 100055"},"PeriodicalIF":4.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"112570328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kudakwashe Chayambuka , Grietus Mulder , Dmitri L. Danilov , Peter H.L. Notten
{"title":"Determination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models","authors":"Kudakwashe Chayambuka , Grietus Mulder , Dmitri L. Danilov , Peter H.L. Notten","doi":"10.1016/j.powera.2021.100056","DOIUrl":"10.1016/j.powera.2021.100056","url":null,"abstract":"<div><p>The simplified gravimetric intermittent titration technique (GITT) model, which was first proposed by Weppner and Huggins in 1977, remains a popular method to determine the solid-state diffusion coefficient (<span><math><mrow><msub><mi>D</mi><mn>1</mn></msub></mrow></math></span>) and the electrochemical kinetic rate constant (<span><math><mrow><mi>k</mi></mrow></math></span>). This is despite the model having been developed on the premise of a single-slab electrode and other gross simplification which are not applicable to modern-day porous battery electrodes. Recently however, more realistic and conceptually descriptive models have emerged, which make use of the increased availability of computational power. Chief among them is the P2D model developed by Newman et al., which has been validated for various porous battery electrodes. Herein, a P2D GITT model is presented and coupled with grid search optimization to determine state-of-charge (SOC) dependent <span><math><mrow><msub><mi>D</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><mi>k</mi></mrow></math></span> parameters for a sodium-ion battery (SIB) cathode. Using this approach, experimental GITT steps could be well fitted and thus validated at different SOC points. This work demonstrates the first usage of the P2D GITT model coupled with optimization as an analytical method to derive and validate physically meaningful parameters. The accurate knowledge of <span><math><mrow><msub><mi>D</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><mi>k</mi></mrow></math></span> as a function of the SOC gives further insight into the SIB intercalation dynamics and rate capability.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"9 ","pages":"Article 100056"},"PeriodicalIF":4.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45029147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coupled nonlinear stress and electric field numerical simulation for all-solid-state lithium-ion batteries","authors":"M. Kodama, N. Horikawa, A. Ohashi, S. Hirai","doi":"10.1016/j.powera.2021.100049","DOIUrl":"https://doi.org/10.1016/j.powera.2021.100049","url":null,"abstract":"<div><p>An accurate analysis of ion transportation in an all-solid-state battery is crucial to improve and estimate performance. For an all-solid-state battery using sulfide solid electrolytes, coupling the stress and electric field simulations is required because the battery is pressurized, this affects the void space, which then affects ion transportation. In this paper, we propose a new method to analyze the ionic conductivity in a pressurized all-solid-state battery by coupling nonlinear stress analysis and electric field analysis. The nonlinear stress analysis can estimate the stress distribution of solid electrolyte and it was found that nonlinear stress-strain characteristics that originate from the voids diminished with increased pressure. The numerical results based on a model-electrode were nearly identical to the experimental results.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100049"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91991944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaana Lilloja , Marek Mooste , Elo Kibena-Põldsepp , Ave Sarapuu , Barr Zulevi , Arvo Kikas , Helle-Mai Piirsoo , Aile Tamm , Vambola Kisand , Steven Holdcroft , Alexey Serov , Kaido Tammeveski
{"title":"Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell","authors":"Jaana Lilloja , Marek Mooste , Elo Kibena-Põldsepp , Ave Sarapuu , Barr Zulevi , Arvo Kikas , Helle-Mai Piirsoo , Aile Tamm , Vambola Kisand , Steven Holdcroft , Alexey Serov , Kaido Tammeveski","doi":"10.1016/j.powera.2021.100052","DOIUrl":"https://doi.org/10.1016/j.powera.2021.100052","url":null,"abstract":"<div><p>A novel and commercially available electrocatalyst is characterised and used as cathode catalyst in an anion-exchange membrane fuel cell (AEMFC). The catalyst material is prepared using VariPore™ method by Pajarito Powder, LLC, and as dopants iron and nitrogen are used, making it a mesoporous transition metal-nitrogen-carbon type catalyst. The physico-chemical characterisation shows the success of doping as well as almost completely mesoporous structure (average pore size of approximately 7 nm) with high specific surface area. The initial assessment of the oxygen reduction reaction (ORR) activity by the rotating ring-disc electrode method reveals that the material exhibits a very good electrocatalytic performance in alkaline media having a half-wave potential of 0.89 V. The catalyst material is employed as an anion exchange membrane fuel cell cathode and it shows AEMFC performance as good as that of the Pt-based material. The high ORR electrocatalytic activity of this material is due to the synergy of nitrogen-moieties, namely pyrrolic-N, pyridinic-N and graphitic-N, with iron as well as the highly mesoporous nature.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100052"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137252983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kodama , A. Ohashi , H. Adachi , T. Miyuki , A. Takeuchi , M. Yasutake , K. Uesugi , T. Kaburagi , S. Hirai
{"title":"Three-dimensional structural measurement and material identification of an all-solid-state lithium-ion battery by X-Ray nanotomography and deep learning","authors":"M. Kodama , A. Ohashi , H. Adachi , T. Miyuki , A. Takeuchi , M. Yasutake , K. Uesugi , T. Kaburagi , S. Hirai","doi":"10.1016/j.powera.2021.100048","DOIUrl":"10.1016/j.powera.2021.100048","url":null,"abstract":"<div><p>Three-dimensional measuring method of the material distribution of an all-solid-state lithium-ion battery (ASSLiB) cathode, by synchrotron radiation high-resolution X-ray computational tomography (nanotomography, nano-CT) and deep learning is proposed in this study. The cathode of the ASSLiB comprised materials with high X-ray absorption coefficients, such as LiCoO<sub>2</sub> and LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub>. Such high absorption coefficients imparted difficulties in obtaining a high-resolution, high-contrast image and in identifying materials with conventional CT value method. The method proposed in this study was effective in acquiring a high-resolution image with fewer artifacts and measured the heavy materials at a high signal-to-noise ratio. We used deep learning with a customized U-net, enabling high accuracy and ultra-high-speed material identification. Using this method, constituent materials were successfully identified in three dimensions. This material identification technique showed great potential for application to other techniques such as focused ion beam–scanning electron microscopy.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100048"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134602956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evelina Wikner , Erik Björklund , Johan Fridner , Daniel Brandell , Torbjörn Thiringer
{"title":"How the utilised SOC window in commercial Li-ion pouch cells influence battery ageing","authors":"Evelina Wikner , Erik Björklund , Johan Fridner , Daniel Brandell , Torbjörn Thiringer","doi":"10.1016/j.powera.2021.100054","DOIUrl":"https://doi.org/10.1016/j.powera.2021.100054","url":null,"abstract":"<div><p>In many lithium-ion battery (LIB) applications, e.g. hybrid vehicles and load-levelling storage systems, only part of the state-of-charge (SOC) range needs to be utilised. This offers the possibility to use an optimal SOC window to avoid LIB ageing. Here, a large test matrix is designed to study LIB ageing in a commercial 26 Ah pouch cell, in order to map the ageing behaviour at different SOC levels with respect to temperature and current. A quantification of the degradation modes, loss of lithium inventory (LLI), loss of active positive (LAM<sub><em>PE</em></sub>) and negative (LAM<sub><em>NE</em></sub>) electrode materials is made by analysing the change in the open circuit voltage (OCV). A key result is that lower SOC intervals significantly improved battery ageing. Even during harsh test conditions, such as high C-rates and temperatures, the cells deliver more than three times the expected number of full cycle equivalents. High SOC combined with high C-rate increase ageing where the dominating ageing mechanisms are LLI, followed by LAM<sub><em>PE</em></sub>.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100054"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91991945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnieszka Gonciarz , Robert Pich , Krzysztof Artur Bogdanowicz , Kazimierz Drabczyk , Anna Sypien , Łukasz Major , Agnieszka Iwan
{"title":"TiO2 and TiO2–Ag powders and thin layer toward self-cleaning coatings for PV panel integrated with sound-absorbing screens: Technical approaches","authors":"Agnieszka Gonciarz , Robert Pich , Krzysztof Artur Bogdanowicz , Kazimierz Drabczyk , Anna Sypien , Łukasz Major , Agnieszka Iwan","doi":"10.1016/j.powera.2021.100053","DOIUrl":"10.1016/j.powera.2021.100053","url":null,"abstract":"<div><p>This work aims at assessment of TiO<sub>2</sub> as the main layer component for self-cleaning layers in photovoltaic panels. TiO<sub>2</sub> (derived from titanium (IV) butoxide or titanium (IV) isopropoxide) without and with silver was examined to find titania suitable microstructure and optical properties. For this purpose silver amounts ranging from 0.1 to 1% were used for 3 separate chemical methods of modification. Microstructure of powders was characterized by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with X-ray energy dispersion spectroscopy. Three techniques: spin-coating, doctor blade, and spray-coating were used to deposit TiO<sub>2</sub> and TiO<sub>2</sub>–Ag layers on glass and silicon solar cells. The photocatalytic activity of TiO<sub>2</sub> and TiO<sub>2</sub>–Ag were investigated in the presence of methylene blue. Concentration of dye, amount of silver, type of TiO<sub>2</sub> with Ag modification and stability over time were analysed towards the best photocatalytic properties. Finally, TiO<sub>2</sub> layers which were used to coat a new type of photovoltaic modules had marginal influence on photovoltaic parameters.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100053"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"96499741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ningbo Xu , Jingwen Shi , Gaopan Liu , Xuerui Yang , Jianming Zheng , Zhongru Zhang , Yong Yang
{"title":"Research progress of fluorine-containing electrolyte additives for lithium ion batteries","authors":"Ningbo Xu , Jingwen Shi , Gaopan Liu , Xuerui Yang , Jianming Zheng , Zhongru Zhang , Yong Yang","doi":"10.1016/j.powera.2020.100043","DOIUrl":"10.1016/j.powera.2020.100043","url":null,"abstract":"<div><p>The construction of Solid Electrolyte Interface (SEI) film in Li-ion batteries with functional electrolyte additives is able to passivate the active material surface and inhibit the decomposition of the electrolyte continuously. In addition, safety issue is also an important factor restricting the large scale application of present lithium-ion batteries. Therefore, the additives for film-forming and safety enhancement are a class of cost-effective components that promote the application and development of batteries. Fluorine is a kind of “bipolar” element, which has strong electronegativity and weak polarity. Fluorine-containing electrolyte additives have excellent kinetic reactivity, which can preferentially generate stable SEI films and uniform Cathode-Electrolyte Interface (CEI) films to effectively improve the electrochemical performance of the batteries. Meanwhile, fluorine-containing electrolyte additives can also be used as flame-retardants to improve safety performance. In this review, we summarize the research status of fluorine-containing additives in recent years and elaborate its reaction mechanisms of improving battery performance. Finally, a personal perspective on the future of the development of fluorine-containing additives is presented.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"7 ","pages":"Article 100043"},"PeriodicalIF":4.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"103968113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transmission line models for evaluation of impedance response of insertion battery electrodes and cells","authors":"Jože Moškon , Miran Gaberšček","doi":"10.1016/j.powera.2021.100047","DOIUrl":"https://doi.org/10.1016/j.powera.2021.100047","url":null,"abstract":"<div><p>Physics based transmission line models (TLMs) are a convenient tool for the analysis of the impedance response of electrochemical systems – the most prominent examples being double-layer capacitors, solar cells, and batteries. TLMs can provide a good quali- and quantitative evaluation of the main transport-reaction steps occurring in a given system - at a moderate mathematical effort. This mini review focuses on the theoretical development and application of TLM schemes in porous battery electrodes and other porous battery components. After a short historical overview of the main achievements in the field, we discuss in some detail the conventional TLM based on the de Levie's original proposal. Afterwards we present a couple of upgrades that address the deficiencies of the conventional model at low frequencies in which diffusion in electrolyte phases (in porous electrode and in separator) is supposed to be observed. We compare systematically the impedance responses of several TLMs and comment on their ability to simulate the measured impedance spectra. Simplifications and limitations of the discussed models are also considered. Finally, a comparison between the proposed TLMs and the output of the well-known Newman's porous electrode model is shown.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"7 ","pages":"Article 100047"},"PeriodicalIF":4.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137208162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}