聚苯乙烯离聚体膜在PEFC中的湿/干循环耐久性

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Toshiki Tanaka , Haruhiko Shintani , Yasushi Sugawara , Akihiro Masuda , Nobuyuki Sato , Makoto Uchida , Kenji Miyatake
{"title":"聚苯乙烯离聚体膜在PEFC中的湿/干循环耐久性","authors":"Toshiki Tanaka ,&nbsp;Haruhiko Shintani ,&nbsp;Yasushi Sugawara ,&nbsp;Akihiro Masuda ,&nbsp;Nobuyuki Sato ,&nbsp;Makoto Uchida ,&nbsp;Kenji Miyatake","doi":"10.1016/j.powera.2021.100063","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H<sub>2</sub> crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H<sub>2</sub> crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100063"},"PeriodicalIF":5.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100063","citationCount":"4","resultStr":"{\"title\":\"Wet/dry cycle durability of polyphenylene ionomer membranes in PEFC\",\"authors\":\"Toshiki Tanaka ,&nbsp;Haruhiko Shintani ,&nbsp;Yasushi Sugawara ,&nbsp;Akihiro Masuda ,&nbsp;Nobuyuki Sato ,&nbsp;Makoto Uchida ,&nbsp;Kenji Miyatake\",\"doi\":\"10.1016/j.powera.2021.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H<sub>2</sub> crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H<sub>2</sub> crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"10 \",\"pages\":\"Article 100063\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.powera.2021.100063\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

根据美国能源部(US-DOE)的协议,在燃料电池的湿/干循环测试中评估了我们的碳氢聚合物电解质膜(聚(亚砜-醌-苯炔)(SPP-QP)或聚苯离聚物的机械耐久性,其中研究了气体扩散层(硬或软GDL)的影响。经过4000次循环后,膜表现出机械失效,硬GDL和H2交叉(通过膜的渗透率)从0.01%跃升至约2%。测试后分析表明,衬垫下的膜边缘受损最严重,在加湿/除湿时尺寸变化受到限制。使用软GDL显著提高了膜的湿/干循环耐久性,即使在3万次循环后,H2交叉也没有实际变化,因为GDL与催化剂层的粘附性很强。SPP-QP膜的机械耐久性优于我们之前在主链上含有醚和酮基团的芳香族离聚体膜。SPP-QP膜的分子量和磺酸基损失较小,表明该膜在严重干湿循环条件下具有化学稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wet/dry cycle durability of polyphenylene ionomer membranes in PEFC

The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H2 crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H2 crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信