{"title":"Enhancing the weld quality of polyetheretherketone polymer cylinders using reducing pores in the weld interface","authors":"Chil-Chyuan Kuo , Xiao-Ze Xie , Chong-Xu Liao , Wen-Bin Huang , Yu-Jie Chen , Armaan Farooqui , Song-Hua Huang , Shih-Feng Tseng","doi":"10.1016/j.jajp.2025.100281","DOIUrl":"10.1016/j.jajp.2025.100281","url":null,"abstract":"<div><div>Continuous drive friction welding (CDFW) is a highly efficient technique for fabricating large Polyether-ether-ketone (PEEK) components. However, the bending strength of welded specimens is often constrained by the formation of pores at the weld interface. Addressing this limitation, this study aims to enhance the bending strength of PEEK polymer cylinders by applying ultrasound-assisted continuous drive friction welding (UACDFW). To further improve joint performance, a novel post-compression technique is introduced and used after the welding process to increase the weld-bonded area. Additionally, image processing software is employed to evaluate and analyze the weld-bonded area ratio, comprehensively assessing the interfacial characteristics. Optimizing CDFW parameters increased the bending strength of the welded components from 201.6 MPa to 380.8 MPa and the joint area ratio from 77.54 % to 99.99 %. The optimized parameters include a rotational speed of 4000 rpm, a preheating time of 5 s, and a post-compression feed rate of 3.2 mm/s. The results demonstrate the potential of UACDFW and post-compression techniques as effective solutions for improving the mechanical performance and reliability of PEEK components in high-performance applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100281"},"PeriodicalIF":3.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of heat input impact on residual stress, microstructure and mechanical characteristics of welded ferrite-pearlite (α-P) steel joints by using taguchi optimization approach","authors":"Nagaraju Doredla, Senthil Kumar N","doi":"10.1016/j.jajp.2024.100278","DOIUrl":"10.1016/j.jajp.2024.100278","url":null,"abstract":"<div><div>Ferrite-Pearlite (α-P) steels like E350 steel were extensively used in pre-engineered structures like industrial warehouses, bridges, etc., owing to their special ductility property. Submerged arc welding is highly efficient in welding long-span prefabricated structures. In this paper, weld overlay and butt weld experimental investigations were performed to optimise the welding process by understanding the influence of heat input on residual stress generation, weld efficiency, microstructural and mechanical characteristics of the weld joint to match the filler wire with the base material characteristics. Trail runs were conducted using the Taguchi design optimisation approach. Taguchi method is useful to standardise and simplify the use of design of experiments. The weld quality was evaluated using non-destructive evaluations. Residual stress was tensile near the weld and transitioned to compressive further from the root. The intensity of residual stress decreased gradually with an increase in transverse distance from the weld root. Acicular ferrite, polygonal ferrite, and traces of lath bainite microstructure were observed in the weld zone. The weld microstructure became coarser toward the melting boundary of the welded joint with an increase in heat input greater than 1.09 kJ/mm. A notable decrease in weld brittleness was observed with an increase in heat input from 1.09–1.37 kJ/mm, and the fracture initiated away from the weld with ductile and quasi-ductile cleavages. The overall microstructure and mechanical characteristics of the welded joint were improved at a controlled heat input of 1.09–1.37 kJ/mm.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100278"},"PeriodicalIF":3.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on diffusion bonding of composite metal foams","authors":"John Cance, Afsaneh Rabiei","doi":"10.1016/j.jajp.2024.100279","DOIUrl":"10.1016/j.jajp.2024.100279","url":null,"abstract":"<div><div>Metal foams are notable for their impressive impact and thermal energy absorption capabilities primarily when compared to bulk metals. Composite metal foams (CMF) exemplify these properties through unchallenged structural uniformity, enhanced by an arrangement of similar prefabricated hollow metal spheres suspended within a metallic matrix. CMF's extraordinary physical, thermal, and mechanical properties make it a prime candidate for replacing bulk materials in various structural applications. However, the use of CMF in larger structures requires the implementation of joining methods. Solid-state joining processes are particularly well-suited for metal foams as they can form solid bonds between porous workpieces without distorting their cellular structures. Previous success was achieved in joining CMF panels up to <em>2.5</em> cm thick through induction welding, though localized heating through induced Eddy currents could not fully permeate thicker samples. This limitation has caused a shift in focus to diffusion bonding of CMF panels thicker than <em>2.5</em> cm. This process utilizes a vacuum furnace, combining heat with intense pressure to facilitate atomic diffusion between workpieces. This study evaluates the suitability of diffusion bonding in joining CMF panels through a combination of uniaxial tensile tests and scanning electron microscopy (SEM) observations. Tensile testing indicated bond strength to be largely affected by sample density, and in turn, consistency of the steel powder used in CMF production. Overall, diffusion bonding of CMF was successful from thicknesses below <em>2.5</em> cm up to <em>5</em> cm, with material density and surface preparation being the apparent driving factors to successful bonding.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100279"},"PeriodicalIF":3.8,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shoeib Karami , Mohammad Yousefieh , Homam Naffakh-Moosavy
{"title":"The effect of laser welding parameters on mechanical properties and microstructure evolution of multi-layered 6061 aluminum alloy","authors":"Shoeib Karami , Mohammad Yousefieh , Homam Naffakh-Moosavy","doi":"10.1016/j.jajp.2024.100275","DOIUrl":"10.1016/j.jajp.2024.100275","url":null,"abstract":"<div><div>In this study, the key findings of evaluating laser beam welding parameters on the multi-layered structure of 6061 aluminum alloys fabricating by accumulative roll bonding process are reported, considering fostering mechanical properties concerning the influence of filler metal and welding speed on the weld bead quality by taking into account reducing welding defects. Welding defects, including porosity and hot cracks, formed due to the evaporation of low-molten elements such as Mg, which can be reduced by adding filler metal to compensate for the vaporized Mg content. The optimal tensile strength is related to the laser beam welding using filler metal at the speed of 40 mm/s. Work-hardening behavior leading to fatigue life improvement is associated with the rearrangement and multiplication of dislocations in all samples. The related mechanisms responsible for the microstructural evolution during the cyclic deformation process were described by transmission electron microscopy observation. The fracture surface analyzed by scanning electron microscopy indicated that delamination contributing to local necking is the leading cause of fracture in accumulative roll-bonded 6061 aluminum alloy. However, the fracture morphology of laser-welded samples displays a heterogeneous distribution of equiaxed dimples along with negligible serpentine sliding, indicating a ductile fracture mode.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100275"},"PeriodicalIF":3.8,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of tool diameter on the joint properties of AA6061 hollow panels using a novel one-step double-acting Friction Stir Weld method","authors":"Nurul Muhayat, Rani Dwi Larasati, Ericha D.W.S. Putri, Eko Prasetya Budiana, Triyono","doi":"10.1016/j.jajp.2024.100277","DOIUrl":"10.1016/j.jajp.2024.100277","url":null,"abstract":"<div><div>Hollow aluminum panels are designed to be both rigid and lightweight, making them ideal for structural applications where material efficiency is critical. However, reliable welding techniques are essential to join these panels effectively. A common challenge during welding is the formation of porosity defects, caused by the varying solubility of hydrogen gas as aluminum transitions between liquid and solid states. While solid-state welding methods like Friction Stir Welding (FSW) are effective in minimizing porosity, they present difficulties when applied to thick materials such as extrusion panels. Thick structures often require multiple welding passes, resulting in increased production time and higher costs. To address these challenges, this study investigates the potential of an innovative one-step double-acting FSW technique. This novel method uses two tools operating simultaneously, providing dual sources of frictional heat and compressive force, a concept unexplored in traditional FSW methods. The research focuses on the influence of shoulder diameter—a critical parameter—on the physical and mechanical properties of AA6061 hollow aluminum panels. Experiments were conducted using shoulder diameters of 20, 22, and 24 mm, with process parameters set at a transverse speed of 30 mm/min, a rotational speed of 1500 rpm, and a tilt angle of 2°. The findings demonstrate that increasing the shoulder diameter significantly enhances the mechanical performance of the welded joints. The specimen welded with a 24 mm shoulder diameter achieved the best results, with a hardness value of 71.73 HVN, a load capacity of 15.51 kN, and a bending strength of 4.7 MPa. These results underline the effectiveness of the one-step double-acting FSW technique in improving the quality and efficiency of welding hollow aluminum panels, offering a practical solution to the limitations of conventional FSW in thick-structured materials.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100277"},"PeriodicalIF":3.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petr Slepička , Klaudia Hurtuková , Silvie Rimpelová , Šárka Trhoňová , Jiří Martan , Michal Procházka , Václav Švorčík , Nikola Slepičková Kasálková
{"title":"Ti and TiAlV foils enhanced with PLD and flash-deposited carbon: On cytocompatibility and antibacterial activity","authors":"Petr Slepička , Klaudia Hurtuková , Silvie Rimpelová , Šárka Trhoňová , Jiří Martan , Michal Procházka , Václav Švorčík , Nikola Slepičková Kasálková","doi":"10.1016/j.jajp.2024.100274","DOIUrl":"10.1016/j.jajp.2024.100274","url":null,"abstract":"<div><div>In this study, we investigated the effects of carbon layer deposition on titanium (Ti) and titanium alloy (TiAlV) substrates using \"flash\" vaporization and pulsed laser deposition (PLD) techniques. Raman spectroscopy revealed that the PLD method produced a higher sp3 carbon bond content than the evaporation method (61 vs<em>.</em> 47 %). Atomic force microscopy and surface wettability analyzes showed differences in surface roughness and contact angle, with PLD-deposited samples exhibiting enhanced hydrophilicity and wrinkled morphology. Subsequent laser annealing optimized surface properties by increasing hydrophobicity, which is critical for cell adhesion. Surface chemistry analysis via scanning electron microscopy and energy dispersive spectroscopy demonstrated significant carbon enrichment in the PLD-deposited samples, mainly for TiAlV substrate. Cytocompatibility tests using human osteosarcoma cells (U-2 OS) revealed varying cell adhesion and proliferation based on surface modification, with PLD-deposited layers promoting better cell interaction. Both carbon deposition techniques enhanced antibacterial effect. This suggests the potential of PLD-deposited carbon layers for biomedical applications, particularly in enhancing implant surfaces for improved cell growth and adhesion, and reduce bacteria, the nanostructured substrates may serve also for subsequent replication process into polymer.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100274"},"PeriodicalIF":3.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of zinc coating on joint properties in impact spot welded Al 6111 aluminum alloy to galvanized high-strength low-alloy steel","authors":"Angshuman Kapil , Anupam Vivek , Glenn Daehn","doi":"10.1016/j.jajp.2024.100276","DOIUrl":"10.1016/j.jajp.2024.100276","url":null,"abstract":"<div><div>This study investigates the influence of Zinc (Zn) coating on the mechanical properties of impact spot welded joints between Aluminum (Al) 6111 alloy and galvanized high-strength low-alloy (HSLA) 340 steel using vaporizing foil actuator welding (VFAW). The Zn coating significantly impacts the weld interface, leading to a heterogeneous structure with regions of retained Zn and trapped jetted material. These regions inhibit direct contact between Al and steel, preventing effective metallurgical bonding and reducing joint strength by 60 % compared to uncoated steel. While the Zn coating impedes bond formation in some areas, near-complete Zn removal in other zones promotes localized ductile tearing and partial bonding, slightly mitigating the overall negative effect. Additionally, a brazing effect outside the weld zone, resulting from the jetting and solidification of Zn and Al-Zn, provides some strength to the joint. The findings highlight the complex role of Zn coating in VFAW, demonstrating that a continuous Zn layer at the weld interface is more detrimental to joint performance than discrete and thin intermetallic compounds.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100276"},"PeriodicalIF":3.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new approach to the reasons for dependency of defects formation to the process parameters in laser powder bed fusion of IN625 on the IN738LC substrate","authors":"Amirhossein Riazi , Seyed Hossein Razavi , Alireza Khavandi , Mostafa Amirjan , Mohsen Ostad Shabani , Hossein Davarzani","doi":"10.1016/j.jajp.2024.100273","DOIUrl":"10.1016/j.jajp.2024.100273","url":null,"abstract":"<div><div>Degradation is a common phenomenon in gas turbine components. Among additive manufacturing (AM) methods like direct laser deposition (DLD) and laser powder bed fusion (LPBF), DLD has been widely studied due to its ease in repair processes. However, LPBF offers higher dimensional accuracy, better surface quality, and reduced stress. This study employed LPBF of IN625 on an IN738 substrate for repair purposes. A wide range of process parameters (power at 100, 150, and 200 W and scan speeds between 100 mm/s to 2700 mm/s) was evaluated. The reasons behind process parameters' influence on defect formation, such as pores and cracks, were investigated, as these aspects have been less emphasized in prior studies. The relationship between process parameters, melt pool shape, pore formation, and changes in elemental concentration was explored. It was found that concentration peaks at the interface are the main factor in crack formation, enabling predictions of cracking behavior. Elements diffuse from rich to poor regions at the IN625/IN738 interface. At scan speeds ≤ 500 mm/s, increasing speed and power both increase elemental concentration at the interface, but speed promotes elemental accumulation behind the interface, while power enhances homogenization. The effect of process parameters on microhardness and cell size was also examined. It was determined that cracks do not form in softer nickel-based matrices where microhardness remains below the critical threshold of 256 HV.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100273"},"PeriodicalIF":3.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear friction welding of T-Joints in low carbon steel: Effect of welding parameters on joint quality","authors":"Huilin Miao , Takayuki Yamashita , Kohsaku Ushioda , Seiichiro Tsutsumi , Yoshiaki Morisada , Hidetoshi Fujii","doi":"10.1016/j.jajp.2024.100267","DOIUrl":"10.1016/j.jajp.2024.100267","url":null,"abstract":"<div><div>Linear friction welding (LFW) is a well-established solid-state joining technique. However, its application in T-joint configurations remains unexplored. This study investigated the effects of welding parameters, such as oscillation direction, upset, and applied pressure after oscillation, on linear friction welded (LFWed) T-joints using low-carbon steel SM490A. The flash ejection behavior, flash profiles, microhardness, microstructure at the welding interface, and tensile properties of the joints were evaluated under various welding conditions. The results indicated that flash symmetry was lower along the oscillation direction and higher perpendicular to it. Short-side oscillation produced more homogeneous flash ejection compared to long-side oscillation. No distinct softening zones were observed in the hardness profiles of the LFWed T-joints. The microstructure at the welding interface consisted of martensite, bainite, and ferrite, indicating that the weld region reached temperatures above the <em>A<sub>1</sub></em> temperature. The martensite fraction and hardness increased with higher upset and applied pressure after oscillation. Tensile tests revealed 100 % joint efficiency across all welding conditions, with ductile fracture occurring in the base metal due to the absence of welding defects and increased hardness at the interface.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100267"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro M.S. Rosado , Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins
{"title":"Joining by forming of bi-material collector coins with rotating elements","authors":"Pedro M.S. Rosado , Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins","doi":"10.1016/j.jajp.2024.100265","DOIUrl":"10.1016/j.jajp.2024.100265","url":null,"abstract":"<div><div>This paper presents a novel manufacturing process for producing innovative bi-material collector coins with free-rotating inner elements. The inner elements are fabricated using additive manufacturing, enabling the creation of coins with complex and intricate geometric details that would be unattainable using conventional wrought materials. The outer elements (rings) are metallic, and this study addresses the challenge of securely connecting them to the inner elements through force-closed mechanisms formed during the coin minting process. Finite element modeling, combined with experimentation on bi-material (polymer-metal and metal-metal) coins, is employed to analyze material flow, assess minting forces, and evaluate contact pressures at the force-closed joints. The analysis ensures that adequate destructive forces are required to separate the inner elements from the rings and provides insights into selecting the appropriate process parameters for simultaneous coining and joining. The successful production of the first bi-material collector coin prototypes with free-rotational inner elements validates the overall development.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100265"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}