Hot corrosion mechanism in transient liquid phase bonded HX superalloy: Effect of bonding time

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
H. Bakhtiari , M. Farvizi , M.R. Rahimipour , A. Malekan
{"title":"Hot corrosion mechanism in transient liquid phase bonded HX superalloy: Effect of bonding time","authors":"H. Bakhtiari ,&nbsp;M. Farvizi ,&nbsp;M.R. Rahimipour ,&nbsp;A. Malekan","doi":"10.1016/j.jajp.2025.100298","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the hot corrosion behavior of transient liquid phase (TLP) bonding in Hastelloy X (HX) subjected to a molten salt environment of Na<sub>2</sub>SO<sub>4</sub>–V<sub>2</sub>O<sub>5</sub> at 900°C, examining various bonding times of 5, 20, 80, 320, and 640 minutes. The samples were bonded at 1070°C, and their corrosion products along with microstructural features were examined. The microstructural analysis confirmed the presence of primary eutectic phases in the joints, including Ni-rich borides and silicides, Ni-Si eutectics, and several chromium-rich borides. Samples bonded for 20 and 80 min showed inferior hot corrosion resistance. Conversely, the sample that was bonded for 320 minutes exhibited improved resistance because of a more uniform distribution of alloy elements and lower boride concentrations at the interface. During the hot corrosion tests, initially, the TLP surface is covered by a dense Cr<sub>2</sub>O<sub>3</sub> and NiO layer. After 20 h of hot corrosion, due to the reaction of oxide layers with vanadium, NaVO<sub>3</sub> forms, while sulfur diffusion leads to the evolution of internal sulfides based on Ni, Cr, and Mo. The presence of NaVO<sub>3</sub> and SO<sub>3</sub>, along with the reduction of Cr<sub>2</sub>O<sub>3</sub>, significantly affects the hot corrosion resistance over prolonged exposure.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100298"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the hot corrosion behavior of transient liquid phase (TLP) bonding in Hastelloy X (HX) subjected to a molten salt environment of Na2SO4–V2O5 at 900°C, examining various bonding times of 5, 20, 80, 320, and 640 minutes. The samples were bonded at 1070°C, and their corrosion products along with microstructural features were examined. The microstructural analysis confirmed the presence of primary eutectic phases in the joints, including Ni-rich borides and silicides, Ni-Si eutectics, and several chromium-rich borides. Samples bonded for 20 and 80 min showed inferior hot corrosion resistance. Conversely, the sample that was bonded for 320 minutes exhibited improved resistance because of a more uniform distribution of alloy elements and lower boride concentrations at the interface. During the hot corrosion tests, initially, the TLP surface is covered by a dense Cr2O3 and NiO layer. After 20 h of hot corrosion, due to the reaction of oxide layers with vanadium, NaVO3 forms, while sulfur diffusion leads to the evolution of internal sulfides based on Ni, Cr, and Mo. The presence of NaVO3 and SO3, along with the reduction of Cr2O3, significantly affects the hot corrosion resistance over prolonged exposure.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信