钛与PET树脂加热加压直接结合机理:气泡动力学对结合强度的影响

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Katsuyoshi Kondoh , Nodoka Nishimura , Kazuki Shitara , Shota Kariya , Ke Chen , Junko Umeda
{"title":"钛与PET树脂加热加压直接结合机理:气泡动力学对结合强度的影响","authors":"Katsuyoshi Kondoh ,&nbsp;Nodoka Nishimura ,&nbsp;Kazuki Shitara ,&nbsp;Shota Kariya ,&nbsp;Ke Chen ,&nbsp;Junko Umeda","doi":"10.1016/j.jajp.2025.100301","DOIUrl":null,"url":null,"abstract":"<div><div>In response to growing environmental concerns, the transportation industry, including automotive and aerospace sectors, has emphasized improving fuel efficiency and reducing carbon dioxide emissions. To achieve significant weight reduction, multi-material design strategies that strategically utilize different materials based on their properties are being adopted. This trend highlights the need for advanced joining technologies capable of bonding dissimilar materials, such as metals and polymers or resins, while maintaining structural integrity and lightweight performance. This study investigates the direct bonding mechanism between pure titanium (Ti) and polyethylene terephthalate (PET) resin using a simple heating and pressurization process. Bubble formation at the bonding interface, a critical factor influencing joint strength, was analyzed through in-situ observation. Results show that controlled bubble dynamics enhance bonding by creating localized pressure, while excessive bubbles act as defects. Optimal bonding conditions were identified at 200–300 °C with relatively high bonding shear stress. X-ray photoelectron spectroscopy revealed the formation of Ti-C bonds, confirming strong chemical interactions at the interface. Additionally, pyrolysis gas chromatography-mass spectrometry identified ethylene glycol as a key component in bubble generation during thermal decomposition of PET. The findings highlight the significance of surface preparation, thermal control, and bubble management in achieving high bonding strength. This research provides insights into sustainable and efficient methods of dissimilar materials that can improve recyclability and support the development of advanced lightweight structures.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100301"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct bonding mechanism of titanium and PET resin via heating and pressurization: Influence of bubble dynamics on bonding strength\",\"authors\":\"Katsuyoshi Kondoh ,&nbsp;Nodoka Nishimura ,&nbsp;Kazuki Shitara ,&nbsp;Shota Kariya ,&nbsp;Ke Chen ,&nbsp;Junko Umeda\",\"doi\":\"10.1016/j.jajp.2025.100301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to growing environmental concerns, the transportation industry, including automotive and aerospace sectors, has emphasized improving fuel efficiency and reducing carbon dioxide emissions. To achieve significant weight reduction, multi-material design strategies that strategically utilize different materials based on their properties are being adopted. This trend highlights the need for advanced joining technologies capable of bonding dissimilar materials, such as metals and polymers or resins, while maintaining structural integrity and lightweight performance. This study investigates the direct bonding mechanism between pure titanium (Ti) and polyethylene terephthalate (PET) resin using a simple heating and pressurization process. Bubble formation at the bonding interface, a critical factor influencing joint strength, was analyzed through in-situ observation. Results show that controlled bubble dynamics enhance bonding by creating localized pressure, while excessive bubbles act as defects. Optimal bonding conditions were identified at 200–300 °C with relatively high bonding shear stress. X-ray photoelectron spectroscopy revealed the formation of Ti-C bonds, confirming strong chemical interactions at the interface. Additionally, pyrolysis gas chromatography-mass spectrometry identified ethylene glycol as a key component in bubble generation during thermal decomposition of PET. The findings highlight the significance of surface preparation, thermal control, and bubble management in achieving high bonding strength. This research provides insights into sustainable and efficient methods of dissimilar materials that can improve recyclability and support the development of advanced lightweight structures.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"11 \",\"pages\":\"Article 100301\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了应对日益增长的环境问题,包括汽车和航空航天部门在内的交通运输业强调提高燃油效率和减少二氧化碳排放。为了实现显著的重量减轻,采用多材料设计策略,根据其特性战略性地利用不同的材料。这一趋势凸显了对先进连接技术的需求,这种技术能够连接不同的材料,如金属、聚合物或树脂,同时保持结构完整性和轻量化性能。本研究采用简单的加热加压工艺研究了纯钛(Ti)与聚对苯二甲酸乙二醇酯(PET)树脂之间的直接键合机理。通过现场观察,分析了影响接头强度的关键因素——界面气泡的形成。结果表明,可控的气泡动力学通过产生局部压力来增强粘接,而过多的气泡则会形成缺陷。在200 ~ 300℃,较高的剪切应力条件下,确定了最佳的粘结条件。x射线光电子能谱揭示了Ti-C键的形成,证实了界面上强烈的化学相互作用。此外,热解气相色谱-质谱分析发现乙二醇是PET热分解过程中产生气泡的关键成分。研究结果强调了表面制备、热控制和气泡管理对实现高结合强度的重要性。这项研究为不同材料的可持续和高效方法提供了见解,这些方法可以提高可回收性,并支持先进轻质结构的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct bonding mechanism of titanium and PET resin via heating and pressurization: Influence of bubble dynamics on bonding strength
In response to growing environmental concerns, the transportation industry, including automotive and aerospace sectors, has emphasized improving fuel efficiency and reducing carbon dioxide emissions. To achieve significant weight reduction, multi-material design strategies that strategically utilize different materials based on their properties are being adopted. This trend highlights the need for advanced joining technologies capable of bonding dissimilar materials, such as metals and polymers or resins, while maintaining structural integrity and lightweight performance. This study investigates the direct bonding mechanism between pure titanium (Ti) and polyethylene terephthalate (PET) resin using a simple heating and pressurization process. Bubble formation at the bonding interface, a critical factor influencing joint strength, was analyzed through in-situ observation. Results show that controlled bubble dynamics enhance bonding by creating localized pressure, while excessive bubbles act as defects. Optimal bonding conditions were identified at 200–300 °C with relatively high bonding shear stress. X-ray photoelectron spectroscopy revealed the formation of Ti-C bonds, confirming strong chemical interactions at the interface. Additionally, pyrolysis gas chromatography-mass spectrometry identified ethylene glycol as a key component in bubble generation during thermal decomposition of PET. The findings highlight the significance of surface preparation, thermal control, and bubble management in achieving high bonding strength. This research provides insights into sustainable and efficient methods of dissimilar materials that can improve recyclability and support the development of advanced lightweight structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信