Direct bonding mechanism of titanium and PET resin via heating and pressurization: Influence of bubble dynamics on bonding strength

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Katsuyoshi Kondoh , Nodoka Nishimura , Kazuki Shitara , Shota Kariya , Ke Chen , Junko Umeda
{"title":"Direct bonding mechanism of titanium and PET resin via heating and pressurization: Influence of bubble dynamics on bonding strength","authors":"Katsuyoshi Kondoh ,&nbsp;Nodoka Nishimura ,&nbsp;Kazuki Shitara ,&nbsp;Shota Kariya ,&nbsp;Ke Chen ,&nbsp;Junko Umeda","doi":"10.1016/j.jajp.2025.100301","DOIUrl":null,"url":null,"abstract":"<div><div>In response to growing environmental concerns, the transportation industry, including automotive and aerospace sectors, has emphasized improving fuel efficiency and reducing carbon dioxide emissions. To achieve significant weight reduction, multi-material design strategies that strategically utilize different materials based on their properties are being adopted. This trend highlights the need for advanced joining technologies capable of bonding dissimilar materials, such as metals and polymers or resins, while maintaining structural integrity and lightweight performance. This study investigates the direct bonding mechanism between pure titanium (Ti) and polyethylene terephthalate (PET) resin using a simple heating and pressurization process. Bubble formation at the bonding interface, a critical factor influencing joint strength, was analyzed through in-situ observation. Results show that controlled bubble dynamics enhance bonding by creating localized pressure, while excessive bubbles act as defects. Optimal bonding conditions were identified at 200–300 °C with relatively high bonding shear stress. X-ray photoelectron spectroscopy revealed the formation of Ti-C bonds, confirming strong chemical interactions at the interface. Additionally, pyrolysis gas chromatography-mass spectrometry identified ethylene glycol as a key component in bubble generation during thermal decomposition of PET. The findings highlight the significance of surface preparation, thermal control, and bubble management in achieving high bonding strength. This research provides insights into sustainable and efficient methods of dissimilar materials that can improve recyclability and support the development of advanced lightweight structures.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100301"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to growing environmental concerns, the transportation industry, including automotive and aerospace sectors, has emphasized improving fuel efficiency and reducing carbon dioxide emissions. To achieve significant weight reduction, multi-material design strategies that strategically utilize different materials based on their properties are being adopted. This trend highlights the need for advanced joining technologies capable of bonding dissimilar materials, such as metals and polymers or resins, while maintaining structural integrity and lightweight performance. This study investigates the direct bonding mechanism between pure titanium (Ti) and polyethylene terephthalate (PET) resin using a simple heating and pressurization process. Bubble formation at the bonding interface, a critical factor influencing joint strength, was analyzed through in-situ observation. Results show that controlled bubble dynamics enhance bonding by creating localized pressure, while excessive bubbles act as defects. Optimal bonding conditions were identified at 200–300 °C with relatively high bonding shear stress. X-ray photoelectron spectroscopy revealed the formation of Ti-C bonds, confirming strong chemical interactions at the interface. Additionally, pyrolysis gas chromatography-mass spectrometry identified ethylene glycol as a key component in bubble generation during thermal decomposition of PET. The findings highlight the significance of surface preparation, thermal control, and bubble management in achieving high bonding strength. This research provides insights into sustainable and efficient methods of dissimilar materials that can improve recyclability and support the development of advanced lightweight structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信