{"title":"Characterisation of a novel sustainable wood-geopolymer masonry units","authors":"Firesenay Zerabruk Gigar , Amar Khennane , Jong-Leng Liow , Biruk Hailu Tekle , Zongjun Li","doi":"10.1016/j.dibe.2024.100540","DOIUrl":"10.1016/j.dibe.2024.100540","url":null,"abstract":"<div><p>Masonry units have been fundamental to building construction for over 6000 years, making them one of the oldest and most widely used materials in the industry. However, their production using ordinary Portland cement has significant environmental impacts, including high carbon dioxide emissions and depletion of natural resources. This highlights the need for more sustainable alternatives. One promising option is the use of recycled aggregates from construction and demolition waste in masonry unit manufacturing. This paper investigates the use of chipped waste timber as aggregates, bound together with geopolymer cement made from industrial by-products such as fly ash and slag. The result is a new type of masonry units, referred to as wood geopolymer masonry units (WGMUs), which were evaluated against established standards and compared with conventional masonry units (CMUs). The innovative WGMUs demonstrated improved ductility and reduced density compared to CMUs, making them easier to handle and lighter in construction. They also have a distinctive, rustic texture and consistent dimensions that meet Australian standards. Although WGMUs exhibited higher water absorption and drying contraction due to their wood content, these characteristics generally remain within acceptable limits, supporting their potential as eco-friendly construction materials.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100540"},"PeriodicalIF":6.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002217/pdfft?md5=682c591356b13a552fd1c9d0440a293d&pid=1-s2.0-S2666165924002217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation of the impact of model complexity on indoor daylight spectral simulations","authors":"Jaka Potočnik, Luka Pajek, Mitja Košir","doi":"10.1016/j.dibe.2024.100543","DOIUrl":"10.1016/j.dibe.2024.100543","url":null,"abstract":"<div><p>Daylight spectral simulation is crucial for designing functional, healthy spaces and predicting light interactions. It is essential for accurate non-image-forming effects of light calculations. This study addresses the knowledge gap in reproducing indoor daylight spectral conditions in the built environment. Using varying levels of geometry (LOG) and information (LOI), simulation accuracy was assessed by comparing it with experimental data from two offices over three days with cloudy and clear sky conditions. The lowest accuracy was found with high LOI and low LOG simulations. For the highest accuracy, specific material spectral properties are needed, while spectrally-neutral materials at low LOG produced comparable results. Simulations near and facing windows were the most accurate. The study concludes that to reproduce indoor daylight spectral conditions, modelling should use either the lowest or highest geometry and information complexity, depending on available modelling time and required accuracy.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100543"},"PeriodicalIF":6.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002242/pdfft?md5=423fef9b0e18904522af6e23b9cd2b2e&pid=1-s2.0-S2666165924002242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoliang Sheng , Binrong Zhu , Jingming Cai , Jinsheng Han , Yamei Zhang , Jinlong Pan
{"title":"Influence of waste glass powder on printability and mechanical properties of 3D printing geopolymer concrete","authors":"Zhaoliang Sheng , Binrong Zhu , Jingming Cai , Jinsheng Han , Yamei Zhang , Jinlong Pan","doi":"10.1016/j.dibe.2024.100541","DOIUrl":"10.1016/j.dibe.2024.100541","url":null,"abstract":"<div><p>Geopolymers represent a promising solution for reducing carbon emissions in 3D printing concrete (3DPC). This study explores the utilization of waste glass powder (WGP) as a novel precursor material to evaluate its influence on the printability and hardened mechanical properties of 3D printing geopolymer concrete based on slag and fly ash. Experimental results indicate that WGP content below 10% accelerates hydration and enhances buildability, whereas content exceeding 10% slows hydration but improves extrudability. Mechanical tests on cured specimens demonstrate a notable increase in compressive and flexural strength with increasing WGP content from 0% to 20%. Microstructural and chemical analyses of the 20% WGP variant reveal a denser morphology and an optimized Si/Al ratio.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100541"},"PeriodicalIF":6.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002229/pdfft?md5=ec96c0b4f526a9cfe840e9288da3791e&pid=1-s2.0-S2666165924002229-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edvard P.G. Bruun , Robin Oval , Wesam Al Asali , Orsolya Gáspár , Vittorio Paris , Sigrid Adriaenssens
{"title":"Automating historical centering-minimizing masonry vaulting strategies: Applications to cooperative robotic construction","authors":"Edvard P.G. Bruun , Robin Oval , Wesam Al Asali , Orsolya Gáspár , Vittorio Paris , Sigrid Adriaenssens","doi":"10.1016/j.dibe.2024.100516","DOIUrl":"10.1016/j.dibe.2024.100516","url":null,"abstract":"<div><p>This paper investigates the feasibility of adapting ancient historical construction techniques to cooperative robotic assembly methods to minimize centering requirements in masonry vaults. First, an overview of seven historical techniques is presented. Next, a classification framework is introduced to evaluate the automation potential of these methods, identifying the rib network as the most promising candidate. This is followed by two computational case studies on the cooperative robotic construction of planar masonry arches and multi-arch rib networks. These studies evaluated the impact of robotic reachability and support payload on the feasibility of centering-free construction. A conclusion based only on these simulation results is that high-payload fixed robots, in comparison to medium-payload mobile setups, allow for the construction of larger and more complex rib structures. This research is of relevance to architects and engineers interested in using a cooperative robotic fabrication framework to reduce centering in masonry vault construction.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100516"},"PeriodicalIF":6.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001972/pdfft?md5=abfcf926673c85cea957a607ca4e3520&pid=1-s2.0-S2666165924001972-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of the negative-temperature properties of calcium sulphoaluminate cement by three multifunctional chemical admixtures","authors":"Hanlin Chen , Zhonghua Li , Guobing Ying","doi":"10.1016/j.dibe.2024.100537","DOIUrl":"10.1016/j.dibe.2024.100537","url":null,"abstract":"<div><p>The construction of concrete in cold climates is associated with a significant energy consumption and an extensive carbon footprint. This is attributed to the production of raw materials and the necessity for additional measures to prevent frost damage. Finding suitable and environmental-friendly cementitious materials and admixtures for cold weather is a relatively straightforward and cost-effective solution. In this study, calcium sulphoaluminate cement (CSA) was selected, and low doses of three admixtures (lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>), calcium mitrite (Ca(NO<sub>2</sub>)<sub>2</sub>), and calcium chloride (CaCl<sub>2</sub>)) were used at low dosages to modify the properties of CSA at sub-zero temperatures. The results showed that: The addition of Li<sub>2</sub>CO<sub>3</sub> to CSA can significantly increase the early hydration of CSA, improve the early mechanical properties, shorten the curing time, and significantly reduce the content of frozen water in the pores. Ca(NO<sub>2</sub>)<sub>2</sub> ensured the sustained late-stage development of CSA strength, which reached 90.5 MPa at −7+28 d; CaCl<sub>2</sub> significantly lowered the freezing point of the cement paste and also improved the mid and late-stage strength.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100537"},"PeriodicalIF":6.2,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002187/pdfft?md5=9b2bad6002b6cd54ad06df641c2bcf65&pid=1-s2.0-S2666165924002187-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene Campo Gay , Lars Hvam , Anders Haug , George Q. Huang , Robert Larsson
{"title":"A digital tool for life cycle assessment in construction projects","authors":"Irene Campo Gay , Lars Hvam , Anders Haug , George Q. Huang , Robert Larsson","doi":"10.1016/j.dibe.2024.100535","DOIUrl":"10.1016/j.dibe.2024.100535","url":null,"abstract":"<div><p>The building and construction industry is responsible for around 40% of global greenhouse gas emissions, driving the urgent need for new regulations. As such, the life cycle assessment (LCA) methodology has become fundamental for evaluating environmental impacts. Despite the need for digital tools to support environmental performance evaluations, the lack of guidance on developing such tools hinders their implementation. This article presents an automated configuration approach to develop digital tools in construction, which facilitates the proactive comparison of design choices and reduces CO<sub>2</sub> emissions. We demonstrate its application by implementing it at Heidelberg Materials Cement Sverige in Sweden. The results reveal that the LCA digital tool influences decision-making and efficiently quantifies global warming potential in the early project stages and reduces product-related CO<sub>2</sub> emissions by up to 40%. Furthermore, the findings highlight greater accuracy in LCA calculations compared to current manual methods and quicker design iterations thanks to real-time information.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100535"},"PeriodicalIF":6.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002163/pdfft?md5=2b04431422af162de189079f48e97df9&pid=1-s2.0-S2666165924002163-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Long , Katherine Fleming , Alex Swindler , Andrew Held , Robin Mitchell , Gregor P. Henze
{"title":"Advances in building data management for building performance standards using the SEED platform","authors":"Nicholas Long , Katherine Fleming , Alex Swindler , Andrew Held , Robin Mitchell , Gregor P. Henze","doi":"10.1016/j.dibe.2024.100530","DOIUrl":"10.1016/j.dibe.2024.100530","url":null,"abstract":"<div><p>Reducing energy consumption and greenhouse gas emissions in the built environment is a critical step in achieving emission goals to mitigate climate change impacts. Local, federal, and international jurisdictions are deploying several methods to reduce energy and emissions such as voluntary and mandatory benchmarking and building performance standards, requiring building owners to reach energy and emission targets.</p><p>Jurisdictions leveraging benchmarking and building performance standards require knowledge of the buildings covered; which is a large task due to staffing constraints, limited information on building characteristics and tax parcel data, and the need for advanced data management techniques to align datasets. This paper describes an open-source platform's recent advances to create consistent taxonomies, identify erroneous data, enable auditability, and track building performance. The paper concludes with two use cases on how the platform has been used by jurisdictions.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100530"},"PeriodicalIF":6.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002114/pdfft?md5=6da1d11f790c8a941ff102600c2adb99&pid=1-s2.0-S2666165924002114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on the effects of rebar diameter on the post-fire bond capacity of RC flexural members and development of a novel post-fire bond model","authors":"Arunita Das , Josipa Bošnjak , Akanshu Sharma","doi":"10.1016/j.dibe.2024.100536","DOIUrl":"10.1016/j.dibe.2024.100536","url":null,"abstract":"<div><p>This study is part of a comprehensive research effort focused on examining the impact of various parameters on the post-fire bond behaviour of RC flexural members. Precisely, the impact of the rebar diameter is thoroughly discussed. Beam-end specimens, which realistically simulate the boundary conditions of a full-scale beam while maintaining a relatively compact size, were subjected to ISO 834 fire curve. To investigate the behaviour of lap-splice in a slab and beam, two different fire exposure scenarios, where one side (slab) and three sides (beam) of the specimens were exposed to fire, were considered. It is evident that although the initial and residual load-carrying capacities increase with larger rebar diameters in absolute terms, the differences in residual bond capacities remain relatively insignificant across nearly all examined fire-exposure durations. Based on the evaluation of the test results, a model for local bond stress-slip curve of bond affected by fire is proposed.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100536"},"PeriodicalIF":6.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002175/pdfft?md5=6d713357aa57a96037f3ba85e080699c&pid=1-s2.0-S2666165924002175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Huber , Philipp Grasl , Michael Kleiser , Benjamin Kromoser , Philipp Preinstorfer
{"title":"Holistic life cycle cost analysis of road bridges with non-metallic reinforcement","authors":"Tobias Huber , Philipp Grasl , Michael Kleiser , Benjamin Kromoser , Philipp Preinstorfer","doi":"10.1016/j.dibe.2024.100533","DOIUrl":"10.1016/j.dibe.2024.100533","url":null,"abstract":"<div><p>Corrosion-related damage due to exposure to environmental conditions is the main cause of costs in the maintenance of transport infrastructure. Because of its high corrosion resistance and the associated higher durability, non-metallic reinforcement offers great potential for preventing such damage, thus reducing maintenance costs. In this article, potential savings for an integral road bridge are studied through a holistic life cycle cost (LCC) analysis considering four different reinforcement materials (steel, glass, basalt, carbon). A fair comparison is enabled by a material-specific design, the calculation of maintenance and user costs and the consideration of the respective disposal scenario. Moreover, environmental costs are recognised by carbon pricing based on life cycle analysis (LCA). The influence of individual parameters is quantified by means of a sensitivity analysis and the probability of savings is studied by Monte Carlo simulation. It is shown that higher investment costs for non-metallic reinforcement can be compensated by lower user costs. This is mainly due to shorter maintenance periods, as less time is required for repair action, whereby potential savings in user costs are particularly evident if the traffic route below the bridge is not disrupted. It is concluded that even from today's perspective, the use of glass and basalt fibre-reinforced polymer (FRP) reinforcement in highway bridges with average traffic volumes very likely offers an economic advantage over corrosion-prone reinforcing steel.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100533"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266616592400214X/pdfft?md5=4407224ca8920514d11b1f2cf90c2c77&pid=1-s2.0-S266616592400214X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Chougan , Szymon Skibicki , Yazeed A. Al-Noaimat , Karol Federowicz , Marcin Hoffmann , Daniel Sibera , Krzysztof Cendrowski , Mateusz Techman , Joao Nuno Pacheco , Seyed Hamidreza Ghaffar , Pawel Sikora
{"title":"Comparative analysis of ternary blended cement with clay and engineering brick aggregate for high-performance 3D printing","authors":"Mehdi Chougan , Szymon Skibicki , Yazeed A. Al-Noaimat , Karol Federowicz , Marcin Hoffmann , Daniel Sibera , Krzysztof Cendrowski , Mateusz Techman , Joao Nuno Pacheco , Seyed Hamidreza Ghaffar , Pawel Sikora","doi":"10.1016/j.dibe.2024.100529","DOIUrl":"10.1016/j.dibe.2024.100529","url":null,"abstract":"<div><p>Utilising recycled brick aggregate in cementitious mixtures can decrease the overdependency on limited natural resources and improve the sustainability of concrete. This paper presents a potential solution to lower the amount of waste being landfilled and increase the sustainability of 3D concrete printing technology by combining low-carbon ternary blended cement with recycled aggregates. Hence, the effect of incorporating two types of recycled brick aggregate - clay brick (CBA) and engineering brick (EBA) on the properties of 3D printable ternary blended cement were investigated. The natural aggregate in a pre-existing 3D printable blend was substituted by up to 50 wt.-% with two varieties of recycled brick aggregates available throughout Europe. The recycled brick aggregates underwent characterisation to determine their properties. The fresh property evaluation using the green strength test was used to assess the effect of aggregate replacements on the mixture's shape stability. The mechanical performance of mixtures containing CBA and EBA, both cast and 3D printable mixes, was evaluated and compared to that of the control sample. The results indicated that incorporating recycled brick aggregate enhances green strength and Young's modulus significantly. Mechanical strength performance showed significant enhancement when incorporating RBA, which reached up to 67% and 55% for both cast and 3D printing methods, respectively. The suitability of the developed mix formulations for 3D printing was assessed by printing cylindrical objects.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100529"},"PeriodicalIF":6.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002102/pdfft?md5=767ce60a1539e61d1dd091555415570b&pid=1-s2.0-S2666165924002102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}