Xiang Chen , Hongzhou Zhu , Xinqiang Zhang , Dan Yang , Zhenzhen Wang , Jian Zhang , Jian Zhang
{"title":"Synergistic modification of bamboo aggregates by sodium alginate-CaCl2: optimization and performance evaluation of sustainable lightweight concrete","authors":"Xiang Chen , Hongzhou Zhu , Xinqiang Zhang , Dan Yang , Zhenzhen Wang , Jian Zhang , Jian Zhang","doi":"10.1016/j.dibe.2025.100670","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of global climate change, the demand for green building materials has grown increasingly urgent. This study has made significant advancements in sustainable construction materials by developing all-bamboo aggregate concrete (BAC) enhanced with a sodium alginate-CaCl<sub>2</sub> synergy through an environmentally friendly process. Using response surface methodology optimization, the 28-day compressive strength was increased to 8.10 MPa. Scanning electron microscope (SEM) analysis indicates that the alginate gel forms a cross-linked network within bamboo micro-cracks, substantially improving interfacial bonding. A novel bamboo aggregate mass index (BAMI) has been introduced to quantify particle shape, allowing precise control over aggregate quality, thus offering a new solution for lightweight pavement materials. While fly ash reduces short-term strength, its low alkalinity and secondary hydration effects positively influence long-term durability. This research provides a scientific basis for utilizing BAC in pedestrian pavements and advancing sustainable construction materials.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"22 ","pages":"Article 100670"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000705","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of global climate change, the demand for green building materials has grown increasingly urgent. This study has made significant advancements in sustainable construction materials by developing all-bamboo aggregate concrete (BAC) enhanced with a sodium alginate-CaCl2 synergy through an environmentally friendly process. Using response surface methodology optimization, the 28-day compressive strength was increased to 8.10 MPa. Scanning electron microscope (SEM) analysis indicates that the alginate gel forms a cross-linked network within bamboo micro-cracks, substantially improving interfacial bonding. A novel bamboo aggregate mass index (BAMI) has been introduced to quantify particle shape, allowing precise control over aggregate quality, thus offering a new solution for lightweight pavement materials. While fly ash reduces short-term strength, its low alkalinity and secondary hydration effects positively influence long-term durability. This research provides a scientific basis for utilizing BAC in pedestrian pavements and advancing sustainable construction materials.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.