{"title":"Utilization of graphene as an alternative sustainable amendment in improving soil health through accelerated decomposition of oil palm mulch and enhanced nutrient availability","authors":"Thanet Khomphet, Tajamul Hussain","doi":"10.3389/fagro.2024.1383613","DOIUrl":"https://doi.org/10.3389/fagro.2024.1383613","url":null,"abstract":"Graphene has unique properties for improving soil health properties such as nutrient availability, soil physical and chemical properties, and controlled release of essential elements. This research aimed at determining the impact of graphene amendment on the decomposition of oil palm frond mulching and on soil health status. The study was conducted using a factorial experiment in completely randomized design with two main factors: (i) covering conditions: cover with plastic sheet and no cover, and (ii) graphene application that included T1 (control): oil palm frond mulching (OFM), T2: OFM + graphene (G), T3: OFM + G + chemical fertilizer, and T4: OFM + G + goat manure. The results indicated that there were significant differences among graphene applications, between cover conditions, and in interactions between graphene applications and cover conditions for all soil characteristics in the most observed month. In the third month of soil analysis, the treatment of graphene applications showed higher electrical conductivity (T2: 151.7 ± 6.8 µS cm−1), available phosphorus (T3: 9.0 ± 6.7 mg kg−1), exchangeable potassium (T2: 67.1 ± 24.9 mg kg−1), and exchangeable calcium (T3: 95.4 ± 5.1 mg kg−1), compared to control. The cover condition showed suitable soil pH (5.0 ± 0.2), higher soil available phosphorus (7.1 ± 5.0 mg kg−1), and exchangeable calcium (599.1 ± 235.2 mg kg−1), but the no-cover condition presented higher soil organic matter (0.7% ± 0.2%), exchangeable potassium (60.3 ± 19.1 mg kg−1), and exchangeable magnesium (96.7 ± 11.4 mg kg−1). Correlation results indicated that most soil characteristics were correlated under graphene applications. Principal component analysis showed that the treatments of graphene application dominated most soil characteristics. The results suggest that graphene has potential for improving soil health properties and can be applied as an alternative sustainable amendment to accelerate the decomposition of oil palm frond mulch and enhance nutrient availability for oil palm. In addition, the authors suggest that further investigations should consider more soil health parameters in long-term field studies for a better understanding and to provide recommendations to farmers.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140977624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua W. A. Miranda, Amit J. Jhala, Jeffrey Bradshaw, Nevin C. Lawrence
{"title":"Crop safety and control of acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) with very long-chain fatty acid-inhibiting herbicides in dry edible bean","authors":"Joshua W. A. Miranda, Amit J. Jhala, Jeffrey Bradshaw, Nevin C. Lawrence","doi":"10.3389/fagro.2024.1401865","DOIUrl":"https://doi.org/10.3389/fagro.2024.1401865","url":null,"abstract":"Palmer amaranth is a relatively recent arrival in Western Nebraska, where acetolactate synthase (ALS)-inhibitor-resistant biotypes are common in the region. With limited effective postemergence (POST) herbicides for controlling ALS-inhibitor-resistant Palmer amaranth in dry edible bean, a sequential preemergence (PRE) followed by (fb) POST program of very long-chain fatty acid (VLCFA)-inhibiting herbicides shows promise. Currently, dimethenamid-P is the only VLCFA-inhibiting herbicide registered for POST use in dry edible bean in Nebraska. The objective of this study was to assess the crop safety and effectiveness in weed control of sequential PRE fb POST programs, including pendimethalin + dimethenamid-P applied PRE fb dimethenamid-P POST, pendimethalin + S-metolachlor PRE fb S-metolachlor POST, and pendimethalin + pyroxasulfone PRE fb POST, in comparison with pendimethalin + dimethenamid-P applied PRE fb imazamox + bentazon + fomesafen applied POST in dry edible bean. Results showed that sequential PRE fb POST programs were more effective in reducing both the density and biomass of Palmer amaranth compared to PRE-alone programs. Pendimethalin + dimethenamid-P applied PRE fb dimethenamid-P POST, along with pendimethalin + S-metolachlor PRE fb S-metolachlor POST, resulted in over 85% control of Palmer amaranth, similar to the effectiveness of pendimethalin + dimethenamid-P PRE fb fomesafen + imazamox + bentazon applied POST. Pendimethalin + pyroxasulfone applied PRE-alone and the application of pendimethalin + pyroxasulfone PRE fb pyroxasulfone POST showed inconsistent control of Palmer amaranth, causing high crop injury, stand loss, and delayed maturity, ultimately leading to yield loss. Dimethenamid-P and S-metolachlor demonstrated excellent crop safety when applied either PRE-only or sequentially. Pendimethalin + S-metolachlor PRE fb S-metolachlor POST provided control of Palmer amaranth comparable to that achieved with POST applications of dimethenamid-P and imazamox + bentazon + fomesafen.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Moving towards a mechanistic understanding of biostimulant impacts on soil properties and processes: a semi-systematic review","authors":"Dannielle Roche, Jane R. Rickson, M. Pawlett","doi":"10.3389/fagro.2024.1271672","DOIUrl":"https://doi.org/10.3389/fagro.2024.1271672","url":null,"abstract":"Biostimulants are gaining prominence in scientific research, with the potential to enhance plant productivity through benefits to crop yield/quality and tolerance to environmental stresses. Through possible improvements to nutrient use efficiency, they may also lessen the adverse environmental impacts of conventional inorganic fertilizer use in agriculture. The application of biostimulants is currently uncommon as a farming practice, with uncertain effectiveness in delivering these potential benefits. Current research focuses on biostimulant effects on plant physiological changes. There is little scientific evidence on the impact of biostimulants on soil properties (biological, physical, or chemical) or soil functions. This knowledge gap should be addressed considering the vital role of soil processes in the bioavailability of nutrients, as reflected in crop productivity. This review evaluates laboratory and field experimental work on the effectiveness of common, non-microbial biostimulants, with a focus on their modes of action within the soil matrix. Of 2,097 initial articles returned through the search strings, 10 were within the scope of this review. A common soil biostimulant mechanism emerges from this literature. This relates to the supply of nutrients provided by the biostimulants, which stimulate native soil microbiology in mineralizing organic material in the soil, thus producing more bioavailable nutrients for plant uptake. Additionally, some articles link biostimulant effects to soil physical and chemical changes, which in turn impact soil biology (and vice versa). However, there is inconsistent evidence to provide full support for these explanatory mechanisms. This review highlights the need for further research into the effect of biostimulants on the native soil microbiology and associated soil properties, to provide greater clarity on biostimulants’ modes of action and greater mechanistic insights into how they can be used to improve crop production.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangming Xu, G. Deakin, Jingchen Zhao, T. Passey, Matevz Papp-Rupar
{"title":"Amplicon-based metagenomics to study the effect of coir age and wood biochar on microbiome in relation to strawberry yield","authors":"Xiangming Xu, G. Deakin, Jingchen Zhao, T. Passey, Matevz Papp-Rupar","doi":"10.3389/fagro.2024.1397974","DOIUrl":"https://doi.org/10.3389/fagro.2024.1397974","url":null,"abstract":"In the UK, strawberry is mostly grown in coconut coir substrate under protection. Coir substrate is usually used only for one or two cropping seasons because the continuous reuse of coir without any treatment leads to yield decline. In this study, we investigated the changes in bacterial and fungal communities in strawberry roots and bulk coir in relation to (i) the coir substrate age (cropping seasons) and (ii) oak or beech biochar amendment at planting. Coir age did not affect fungal/bacterial alpha (within-sample) diversity but affected beta (between-sample) diversity. Amendment with either oak or beech biochar did not lead to significant changes in either alpha or beta diversity for both fungi and bacteria, but it did alter the relative abundance of 13 fungal ASVs. This study identified six bacterial and 20 fungal ASVs with a significant positive linear relationship with coir age and also eight bacterial and 22 fungal ASVs with a significant negative linear relationship with coir age. Notably, the observed strawberry yield decline in reused coir substrate could be associated with a generalist root pathogen, Ilyonectria destructans (ex. Cylindrocarpon destructans), of which the abundance increased annually by 225% and 426% in strawberry root and bulk coir, respectively. Future research is needed to confirm the role of I. destructans in reused coir on strawberry plant health and fruit productivity and then to identify management strategies for yield decline mitigation.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140990913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huanzhu He, Yuhang Jiang, Chengjia Su, Qingwen Min, Weikun Wu, Kexiao Xie, Liang Yue, Zhidan Chen, Wenxiong Lin, Pyong-In Yi
{"title":"The quality difference in five oolong tea accessions under different planting management patterns in south Fujian of China","authors":"Huanzhu He, Yuhang Jiang, Chengjia Su, Qingwen Min, Weikun Wu, Kexiao Xie, Liang Yue, Zhidan Chen, Wenxiong Lin, Pyong-In Yi","doi":"10.3389/fagro.2024.1304559","DOIUrl":"https://doi.org/10.3389/fagro.2024.1304559","url":null,"abstract":"Oolong tea, celebrated for its significance in Chinese tea culture, was the subject of investigation in this study.Five varieties of Minnan oolong tea were sampled, each cultivated under two distinct management approaches: conventional management and natural growth methods. The study aimed to discern variations in sensory attributes, encompassing appearance and liquor color, alongside the analysis of chemical composition.The results indicated that oolong tea cultivated through conventional manual management generally exhibited qualities in terms of shape and foliage appearance, in contrast to those grown naturally. However, naturally grown oolong tea tended to exhibit more favorable aroma and taste profiles compared to conventionally managed counterparts. Furthermore, the content of water extract, amino acids, polyphenols, caffeine, and other pivotal chemical constituents were typically higher in naturally grown tea varieties compared to conventionally managed ones. Conversely, catechin content was found to be more abundant in traditionally managed bushes than in those grown naturally. These findings emphasize the significance of implementing appropriate natural growth management practices to enhance the quality of Minnan oolong tea and maintain ecological sustainability.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141000473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hipólito Murga-Orrillo, Jhon K. Chuquímez Gonzales, Luis A. Arévalo López
{"title":"Physiological characterization and bioactive compounds of promising accessions of cowpea (Vigna unguiculata L. Walp) in the Peruvian Amazon","authors":"Hipólito Murga-Orrillo, Jhon K. Chuquímez Gonzales, Luis A. Arévalo López","doi":"10.3389/fagro.2024.1392068","DOIUrl":"https://doi.org/10.3389/fagro.2024.1392068","url":null,"abstract":"Cowpea production in the Peruvian Amazon is increasing due to its ability to adapt to diverse environments, its contribution to soil conservation, and its versatility of uses. This crop is particularly valuable in human nutrition due to its high nutritional quality and nutraceutical properties of its bioactive compounds. The aim of the study was to evaluate the physiology of cowpea plants in accessions PER1005854, PER1005851, and PER12645, under the influence of rice husk mulch, screw tree litter, and oil palm fiber, as well as to determine the bioactive compounds present in the grains. This study aims to promote sustainable cowpea production, expose the nutritional aspects of the grains, and foster their consumption both locally and nationally. The experiment was conducted from November 2022 to March 2023, in Yurimaguas, Loreto, Peru. The application of organic mulches demonstrates a significantly positive impact on the growth of cowpea accessions during their vegetative phase. This effect is possibly attributed to increased water availability, as the mulch reduces soil evaporation. In particular, cowpea accessions PER12645 and PER1005851 exhibit desirable physiological characteristics for grain production, with short cycles of 71 days and higher yields of 1141 and 1125 kg/ha respectively. In contrast, accession PER1005854 is distinguished by its higher biomass production, reaching a value of 14497 kg/ha, a relevant trait for foliage production and its contribution to soil conservation. The bioactive compounds, such as proteins, lipids, and carbohydrates, present in the accessions PER1005854, PER1005851, and PER12645, are similar to those found in other legumes. However, the antioxidant activity of dark tegument cowpeas proved to be superior, particularly highlighted in accession PER12645 (black tegument) with 26.3 μmolTG/g, and in accession PER1005854 (dark red tegument) with 19.5 μmolTG/g. This characteristic is particularly important for consumption, as it is related to the ability to combat oxidative stress in the human body.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of climate change and genetic development on Iowa corn yield","authors":"F. H. Zai, P. McSharry, Herbert Hamers","doi":"10.3389/fagro.2024.1339410","DOIUrl":"https://doi.org/10.3389/fagro.2024.1339410","url":null,"abstract":"The vulnerability of corn yield to high temperature and insufficient rainfall in the US mid-west is widely acknowledged. The impact of extreme weather and genetic development on corn yield is less well known. One of the main reasons is that the multicollinearity in the variables can lead to confounding results. Here we model the impact of climate and genetic development by employing an elastic net regression model to address the multicollinearity issue. This allows us to develop a more robust multiple regression model with higher predictive accuracy. Using granular data for Iowa from 1981-2018, we find that corn yield is vulnerable to high mean summer temperatures particularly in July, a widening diurnal temperature range in June and dry summer conditions (due to extremely low rainfall) from June-August. We find that overall climate impact reduced average annual yield by 0.7%. We also find that genetic development which led to earlier planting dates, widening duration of the reproductive interval, higher growing degree day accumulation and larger net planted area had a beneficial impact on the Iowa corn yield during 1981-2018 resulting in an average annual yield improvement of 1.8% per annum. This provides a basis for optimism that these genetic developments and management practices will continue to adapt and improve in the future to counter the impact of climate change on corn yield. We have also modelled the impact of future climate change using the latest climate projections from the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). These climate projections show that the average temperature during the growing season (MayO-October) will increase by 2.4 -2.9 o C by mid-century while the average spring temperature (March and April) will increase by a relatively slower 1.9 -2.3 o C by mid-century. Additionally, climate projections show that both temperature and rainfall will also become more extreme in the future with the changes varying from spring to summer. Our results show that, just due to climate change alone in Iowa corn yield will decline between 1.4-1.7% per annum until mid-century (or 1.2-2.1% per annum until the late twenty first century).","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chigusa Keller, Smita Joshi, T. Joshi, Eva Goldmann, Amritbir Riar
{"title":"Challenges for crop diversification in cotton-based farming systems in India: a comprehensive gap analysis between practices and policies","authors":"Chigusa Keller, Smita Joshi, T. Joshi, Eva Goldmann, Amritbir Riar","doi":"10.3389/fagro.2024.1370878","DOIUrl":"https://doi.org/10.3389/fagro.2024.1370878","url":null,"abstract":"Crop diversification is a promising practice to improve the sustainability of agricultural production systems, contributing to biodiversity conservation, ecosystem functions, and food security without compromising productivity. Although diverse cropping systems may be more labour-intensive and require good knowledge of the specific cropping system in the local context, they have high potential in managing many of the problems faced in current cotton production in India. However, the adoption of crop diversification is still moderate, with an overall crop diversification index (CDI) of 0.65 for all of India and state-wise CDI between 0.43 and 0.83.Therefore, a four-phased study was conducted to identify the main barriers to crop diversification in cotton-based farming systems in India and highlight levers that can foster their wide adoption to improve the livelihoods of smallholder farmers. The study was carried out between January to October 2020 and consisted of i) a literature review of regional and national policy and planning, ii) situational analysis with a problem tree approach, iii) individual stakeholder interviews with stakeholders from the broader Indian cotton sector, and iv) a participatory feedback workshop with said stakeholders. A total of 51 stakeholders from 24 different organizations were interviewed, 37 of them on technical aspects of crop diversification and 21 stakeholders on market and policy aspects. The same stakeholders were invited to the participatory feedback workshop, where 26 participated in the session on different benefits of crop diversification practices, and the session on market and policy challenges counted 24 participants. The study focused on the main organic cotton producing states in India: Gujarat, Madhya Pradesh, Maharashtra, Haryana, Odisha, and Andhra Pradesh.In our study, it became evident that many policies and governmental schemes exist to promote national food security, sustainable agriculture, and agricultural marketing infrastructure, but crop diversification is still not gaining momentum on the ground. Various levers were identified in the areas of market and procurement, capacity building and knowledge transfer, supply industry and infrastructure, and farmers and women empowerment, where the current policy landscape is failing to foster crop diversification effectively on the farm level.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oasis agriculture revitalization and carbon sequestration for climate-resilient communities","authors":"Faten Dhawi, M. Aleidan","doi":"10.3389/fagro.2024.1386671","DOIUrl":"https://doi.org/10.3389/fagro.2024.1386671","url":null,"abstract":"Revitalizing oasis agriculture, an age-old human endeavor, has historically played a crucial role in sustaining biodiversity and ecosystems in arid regions. Nevertheless, this enduring practice now faces contemporary challenges, including global warming, water scarcity, soil erosion, and negative human activities associated with urbanization. This comprehensive review delves into diverse literature across disciplines, covering topics such as water conservation, biodiversity restoration, agroforestry, and Oasis Holistic Management, with the aim of addressing these challenges. The analysis strongly advocates for the urgent adoption of sustainable practices, including precision irrigation, polyculture, organic farming, agroforestry, and community-based initiatives, to ensure the survival of oasis agriculture and foster long-term environmental and social responsibility. The study underscores the imperative need for the development of “comprehensive, flexible, and forward-looking management strategies” to guide the sustainable revival of oasis farming. By consolidating information from various studies, it lays the groundwork for informed decision-making and policy formulation. As part of revitalizing the oasis agricultural ecosystem and addressing the global climate crisis, we propose a noninvasive tool for assessing carbon sequestration effectiveness based on tree specifications. Recognizing the pivotal role of vegetation in mitigating the ecological impact and facing global crises, we explored parameters influencing plant carbon sequestration, including biomass production, growth rate, longevity, root structure, leaf structure, and average temperature tolerance.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elahe Akbari, A. Darvishi Boloorani, J. Verrelst, Stefano Pignatti, Najmeh Neysani Samany, Saeid Soufizadeh, Saeid Hamzeh
{"title":"How global sensitive is the AquaCrop model to input parameters? A case study of silage maize yield on a regional scale","authors":"Elahe Akbari, A. Darvishi Boloorani, J. Verrelst, Stefano Pignatti, Najmeh Neysani Samany, Saeid Soufizadeh, Saeid Hamzeh","doi":"10.3389/fagro.2024.1304611","DOIUrl":"https://doi.org/10.3389/fagro.2024.1304611","url":null,"abstract":"AquaCrop is a water-driven crop growth model that simulates aboveground biomass production in croplands. This study aimed to identify the driving parameters of the AquaCrop model for the model calibration and simplification to fill the research gap in intermediate environmental conditions between sub-tropical sub-humid and temperate sub-humid climates for silage maize.To this end, we applied global sensitivity analysis (GSA) by combining the Morris method and the Extended Fourier Amplitude Sensitivity Test (EFAST) on crop yield output. The process involved a field sampling of soil and crop of silage maize carried out in the agricultural fields of Ghale-Nou, southern Tehran, Iran, in the summer of 2019 in order to measure certain model parameters.In compliance with the Morris method, 30 parameters were identified as the least sensitive, while results from the EFAST test showed 9 parameters as contributing to the highest sensitivities in the model. The results clearly point to the capacity of employing a combination of both methods to attain a more efficient model calibration. Particular root, soil, canopy development, and biomass production parameters were influential and merit attention during calibration. Instead, parameters describing crop responses to water stress were acting rather insensitive in this study condition. The insights gained from this study, i.e., assessing parameter ranges and distinguishing between less sensitive and more sensitive parameters based on environmental and crop conditions, have the potential to be applied to other crop growth models with caution.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140698433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}