用于改进沙漠环境中高光谱传感的近端传感车和定制冷却箱

IF 3.5 Q1 AGRONOMY
Alison L. Thompson, K. Thorp, M. Conley, D. Pauli
{"title":"用于改进沙漠环境中高光谱传感的近端传感车和定制冷却箱","authors":"Alison L. Thompson, K. Thorp, M. Conley, D. Pauli","doi":"10.3389/fagro.2023.1195030","DOIUrl":null,"url":null,"abstract":"Advancements in field spectrometry have the potential to increase understanding of crop growth and development in response to hot and dry environments. However, as with any instrument used for scientific advancement, it is important to continue developing and optimizing data collection protocols to promote efficiency, safety, and data quality. The goal of this study was to develop a novel data collection method, involving a proximal sensing cart with onboard cooling equipment, to improve deployments of a field spectroradiometer in a hot and dry environment. Advantages and disadvantages of the new method were compared with the traditional backpack approach and other approaches reported in literature.The novel method prevented the spectroradiometer from overheating and nearly eliminated the need to halt data collection for battery changes. It also enabled data collection from a significantly larger field area and from more field plots as compared to the traditional backpack method. Use of a custom cooling box to stabilize operating temperatures for the field spectroradiometer also improved stability of white panel data both within and among collections despite outside air temperatures in excess of 30°C.As compared to traditional data collection approaches for measuring spectral reflectance of field crops in a hot and dry environment, use of a proximal sensing cart with a customized equipment cooling box improved spectroradiometer performance, increased practicality of equipment transport, and reduced operator safety concerns.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proximal sensing cart and custom cooling box for improved hyperspectral sensing in a desert environment\",\"authors\":\"Alison L. Thompson, K. Thorp, M. Conley, D. Pauli\",\"doi\":\"10.3389/fagro.2023.1195030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in field spectrometry have the potential to increase understanding of crop growth and development in response to hot and dry environments. However, as with any instrument used for scientific advancement, it is important to continue developing and optimizing data collection protocols to promote efficiency, safety, and data quality. The goal of this study was to develop a novel data collection method, involving a proximal sensing cart with onboard cooling equipment, to improve deployments of a field spectroradiometer in a hot and dry environment. Advantages and disadvantages of the new method were compared with the traditional backpack approach and other approaches reported in literature.The novel method prevented the spectroradiometer from overheating and nearly eliminated the need to halt data collection for battery changes. It also enabled data collection from a significantly larger field area and from more field plots as compared to the traditional backpack method. Use of a custom cooling box to stabilize operating temperatures for the field spectroradiometer also improved stability of white panel data both within and among collections despite outside air temperatures in excess of 30°C.As compared to traditional data collection approaches for measuring spectral reflectance of field crops in a hot and dry environment, use of a proximal sensing cart with a customized equipment cooling box improved spectroradiometer performance, increased practicality of equipment transport, and reduced operator safety concerns.\",\"PeriodicalId\":34038,\"journal\":{\"name\":\"Frontiers in Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fagro.2023.1195030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fagro.2023.1195030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

田间光谱仪的进步有可能加深人们对作物生长发育在炎热和干燥环境下的反应的了解。然而,与任何用于科学进步的仪器一样,继续开发和优化数据采集协议以提高效率、安全性和数据质量非常重要。本研究的目标是开发一种新的数据收集方法,包括一个带有机载冷却设备的近端传感车,以改进在炎热干燥环境中部署野外光谱辐射计的工作。新方法可防止分光辐射计过热,几乎无需因更换电池而停止数据收集。与传统的背负式方法相比,新方法还能从更大的野外区域和更多的野外地块收集数据。与在炎热干燥的环境中测量田间作物光谱反射率的传统数据采集方法相比,使用带有定制设备冷却箱的近距离传感车提高了光谱辐射计的性能,增加了设备运输的实用性,并减少了操作员的安全顾虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proximal sensing cart and custom cooling box for improved hyperspectral sensing in a desert environment
Advancements in field spectrometry have the potential to increase understanding of crop growth and development in response to hot and dry environments. However, as with any instrument used for scientific advancement, it is important to continue developing and optimizing data collection protocols to promote efficiency, safety, and data quality. The goal of this study was to develop a novel data collection method, involving a proximal sensing cart with onboard cooling equipment, to improve deployments of a field spectroradiometer in a hot and dry environment. Advantages and disadvantages of the new method were compared with the traditional backpack approach and other approaches reported in literature.The novel method prevented the spectroradiometer from overheating and nearly eliminated the need to halt data collection for battery changes. It also enabled data collection from a significantly larger field area and from more field plots as compared to the traditional backpack method. Use of a custom cooling box to stabilize operating temperatures for the field spectroradiometer also improved stability of white panel data both within and among collections despite outside air temperatures in excess of 30°C.As compared to traditional data collection approaches for measuring spectral reflectance of field crops in a hot and dry environment, use of a proximal sensing cart with a customized equipment cooling box improved spectroradiometer performance, increased practicality of equipment transport, and reduced operator safety concerns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Agronomy
Frontiers in Agronomy Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
4.80
自引率
0.00%
发文量
123
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信