T. Kaneko, N. Minh-Dung, P. Quang-Khang, Y. Takei, T. Takahata, K. Matsumoto, I. Shimoyama
{"title":"Pulse wave measurement in human using piezoresistive cantilever on liquid","authors":"T. Kaneko, N. Minh-Dung, P. Quang-Khang, Y. Takei, T. Takahata, K. Matsumoto, I. Shimoyama","doi":"10.1109/MEMSYS.2015.7051046","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7051046","url":null,"abstract":"We propose a device that can measure pulse waves at various points on human body with high sensitivity. Pulse wave velocity was calculated from a synchronized pulse wave measurement on two points. The device had a piezoresistive cantilever placed on silicone oil. The cantilever with oil was embedded in polydimethylsiloxane (PDMS). Pressure waves from arteries can be well conveyed to the cantilever, for the human-skin-like acoustic impedance of the silicone oil and PDMS. The signal to noise ratio of the device was ~80 dB in 10-100 Hz, when excited ~1 μm in displacement.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126395088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semiconductor ic packaging, the next wave","authors":"C. Hung","doi":"10.1109/MEMSYS.2015.7050930","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7050930","url":null,"abstract":"MEMS sensor growth in the future is expected with inevitable trend on miniaturization for smartphone and wearable devices. In this presentation, the next wave architecture of 3D IC packaging solution overview versus traditional packaging technologies will be demonstrated and discussed, for applications including MEMS.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"323 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115279737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D human cardiac muscle on a chip: Quantification of contractile force of human iPS-derived cardiomyocytes","authors":"Y. Morimoto, S. Mori, S. Takeuchi","doi":"10.1109/MEMSYS.2015.7051018","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7051018","url":null,"abstract":"We propose a method for constructing fiber-type three-dimensional (3D) tissue of human iPS-derived cardiomyocytes and quantifying its contractile force in response to the addition of drug. By culturing the cardiomyocytes in micropatterned hydrogel with anchors, we succeeded in fabrication of the fibers with aligned cardiomyocytes and fixation of the fiber edges to the anchors. Since the fiber generated contractile force in a single direction due to alignment of cardiomyocytes, we can measure the contractile force accurately. Furthermore, as a demonstration of drug testing, we quantified contractile frequency and force in accordance with concentrations of pilsicainide. We believed that the fiber of human iPS-derived cardiomyocytes will be used in pharmacokinetic applications for drug development.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116698843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhonglie An, M. Toda, G. Yamamoto, T. Hashida, T. Ono
{"title":"Synthesis of carbon nanotubes-Ni composite for micromechanical elements application","authors":"Zhonglie An, M. Toda, G. Yamamoto, T. Hashida, T. Ono","doi":"10.1109/MEMSYS.2015.7050974","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7050974","url":null,"abstract":"We present the fabrication and characterization of a silicon micromirror with carbon nanotubes (CNTs)-nickel (Ni) composite beams, and evaluate the mechanical stability of the micromirror in terms of resonant frequency. A novel electroplating method is developed for the synthesis of the CNTs-Ni composite. The weight fraction of the CNTs in the electroplated composite is 2.6 wt%, and the ultramicroindentation hardness of the composite is 18.6 GPa. The maximum variation of the resonant frequency of the fabricated micromirror during a long term stability test is approximately 0.25%, and its scanning angle is approximately 20°. It shows the potential ability of the CNTs-Ni composite for micromechanical elements application.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123806704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bonding mechanism in the Velcro concept Si-Si low temperature direct bonding technique","authors":"S. Keshavarzi, U. Mescheder, H. Reinecke","doi":"10.1109/MEMSYS.2015.7050977","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7050977","url":null,"abstract":"This work presents a bonding mechanism between needle-like surfaces for room temperature Si-Si direct bonding similar to the Velcro-principle, a fully CMOS compatible approach suitable for system integration using Si-motherboard concept. The proposed bonding model is superior to other presented models since it considers humidity effect and the deformation mechanism of the needles during the bonding.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"316 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122782123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Fujisawa, S. Ogawa, H. Hata, Mitsuharu Uetsuki, Koji Misaki, Yousuke Takagawa, M. Kimata
{"title":"Multi-color imaging with silicon-on-insulator diode uncooled infrared focal plane array using through-hole plasmonic metamaterial absorbers","authors":"D. Fujisawa, S. Ogawa, H. Hata, Mitsuharu Uetsuki, Koji Misaki, Yousuke Takagawa, M. Kimata","doi":"10.1109/MEMSYS.2015.7051106","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7051106","url":null,"abstract":"This paper reports a silicon-on-insulator diode uncooled infrared focal plane array (IRFPA) with through-hole plasmonic metamaterial absorbers (TH-PLMAs) for multi-color imaging with a 320×240 array format. Through-holes formed on the PLMA can reduce the thermal mass while maintaining both the single-mode and high absorption due to plasmonic metamaterial structures, which results in fast response and high responsivity. The detection wavelength of the PLMA with through-holes can be controlled over a wide range of the IR spectrum by varying the size of the micropatches on the top layer.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132198045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Errando-Herranz, F. Niklaus, G. Stemme, K. Gylfason
{"title":"A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks","authors":"Carlos Errando-Herranz, F. Niklaus, G. Stemme, K. Gylfason","doi":"10.1109/MEMSYS.2015.7050884","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7050884","url":null,"abstract":"We experimentally demonstrate a low-power MEMS tunable photonic ring resonator with 10 selectable channels for wavelength selection in reconfigurable optical networks operating in the C band. The tuning is achieved by changing the geometry of the slot of a silicon slot-waveguide ring resonator, by means of vertical electrostatic parallel-plate actuation. Our device provides static power dissipation below 0.1 μW, a wavelength tuning range of 1 nm, and a narrow bandwidth of 0.1 nm, i.e. 10 nW static power dissipation per selectable channel for TE mode tuning.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114361693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Patterson, Enes Calayir, G. Fedder, G. Piazza, B. Soon, Navab Singh
{"title":"Application of statistical element selection to 3D integrated AlN MEMS filters for performance correction and yield enhancement","authors":"A. Patterson, Enes Calayir, G. Fedder, G. Piazza, B. Soon, Navab Singh","doi":"10.1109/MEMSYS.2015.7051129","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7051129","url":null,"abstract":"By 3D integration of an array of 12 nominally identical AlN MEMS sub-filters with a CMOS switching matrix and application of statistical element selection to the same system, we have built a self-healing filter offering 495 unique filter responses and a tuning range of 500 kHz for both center frequency and bandwidth. The demonstrated system enables correction of intrinsic, fabrication-induced variation in filter performance that would otherwise constitute a severe yield limitation to the manufacture of standalone filters.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123385518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Maeda, K. Terao, Takaaki Suzuki, F. Shimokawa, H. Takao
{"title":"A tactile sensor with the reference plane for detection abilities of frictional force and human body hardness aimed to medical applications","authors":"Y. Maeda, K. Terao, Takaaki Suzuki, F. Shimokawa, H. Takao","doi":"10.1109/MEMSYS.2015.7050936","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7050936","url":null,"abstract":"In this study, a novel tactile sensor with detection abilities of human body hardness and frictional force is reported. A new device configuration of back-side contact is proposed to realize a higher sensitivity of hardness, and low sensitivity to normal force. Miniaturization and sensitivity improvement of tactile sensor are important to apply the sensor to palpation inside of the body. Surface frictional force was successfully measured with rubber block in real time using our tactile image sensor. A completed device was evaluated, and shore A hardness was measured in the range from 1 HS to 54 HS. This performance corresponds to the hardness detection ability of adiposus in human body.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121946527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mahdavi, A. Ramezany, Varun Kumar, S. Pourkamali
{"title":"SNR improvement in amplitude modulated resonant MEMS sensors via thermal-piezoresistive internal amplification","authors":"M. Mahdavi, A. Ramezany, Varun Kumar, S. Pourkamali","doi":"10.1109/MEMSYS.2015.7051108","DOIUrl":"https://doi.org/10.1109/MEMSYS.2015.7051108","url":null,"abstract":"Effect of thermal-piezoresistive internal amplification on signal to noise ratio (SNR) of amplitude modulated resonant MEMS sensors (e.g. vibratory gyroscopes and Lorentz force magnetometers) has been studied in this work showing the possibility to significantly improve the detection limit. It has been shown that as the thermal-piezoresistive amplification sets in, noise rms value increases with a slower rate than the boost in vibration amplitude and output signal level, therefore the SNR increases. In addition to higher sensitivity due to internal amplification in such devices, improvement in SNR reduces the minimum detectable signal in presence of limiting Brownian and thermal noises. Preliminary measurement results show that increasing the DC bias current, which leads to a 3X increase in vibration amplitude, improves the SNR by a factor of 4.5 (6.6 dB).","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121429023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}