M. Mahdavi, A. Ramezany, Varun Kumar, S. Pourkamali
{"title":"利用热压阻内放大技术提高调幅谐振MEMS传感器的信噪比","authors":"M. Mahdavi, A. Ramezany, Varun Kumar, S. Pourkamali","doi":"10.1109/MEMSYS.2015.7051108","DOIUrl":null,"url":null,"abstract":"Effect of thermal-piezoresistive internal amplification on signal to noise ratio (SNR) of amplitude modulated resonant MEMS sensors (e.g. vibratory gyroscopes and Lorentz force magnetometers) has been studied in this work showing the possibility to significantly improve the detection limit. It has been shown that as the thermal-piezoresistive amplification sets in, noise rms value increases with a slower rate than the boost in vibration amplitude and output signal level, therefore the SNR increases. In addition to higher sensitivity due to internal amplification in such devices, improvement in SNR reduces the minimum detectable signal in presence of limiting Brownian and thermal noises. Preliminary measurement results show that increasing the DC bias current, which leads to a 3X increase in vibration amplitude, improves the SNR by a factor of 4.5 (6.6 dB).","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SNR improvement in amplitude modulated resonant MEMS sensors via thermal-piezoresistive internal amplification\",\"authors\":\"M. Mahdavi, A. Ramezany, Varun Kumar, S. Pourkamali\",\"doi\":\"10.1109/MEMSYS.2015.7051108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of thermal-piezoresistive internal amplification on signal to noise ratio (SNR) of amplitude modulated resonant MEMS sensors (e.g. vibratory gyroscopes and Lorentz force magnetometers) has been studied in this work showing the possibility to significantly improve the detection limit. It has been shown that as the thermal-piezoresistive amplification sets in, noise rms value increases with a slower rate than the boost in vibration amplitude and output signal level, therefore the SNR increases. In addition to higher sensitivity due to internal amplification in such devices, improvement in SNR reduces the minimum detectable signal in presence of limiting Brownian and thermal noises. Preliminary measurement results show that increasing the DC bias current, which leads to a 3X increase in vibration amplitude, improves the SNR by a factor of 4.5 (6.6 dB).\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7051108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SNR improvement in amplitude modulated resonant MEMS sensors via thermal-piezoresistive internal amplification
Effect of thermal-piezoresistive internal amplification on signal to noise ratio (SNR) of amplitude modulated resonant MEMS sensors (e.g. vibratory gyroscopes and Lorentz force magnetometers) has been studied in this work showing the possibility to significantly improve the detection limit. It has been shown that as the thermal-piezoresistive amplification sets in, noise rms value increases with a slower rate than the boost in vibration amplitude and output signal level, therefore the SNR increases. In addition to higher sensitivity due to internal amplification in such devices, improvement in SNR reduces the minimum detectable signal in presence of limiting Brownian and thermal noises. Preliminary measurement results show that increasing the DC bias current, which leads to a 3X increase in vibration amplitude, improves the SNR by a factor of 4.5 (6.6 dB).