Carbon Energy最新文献

筛选
英文 中文
Enabling built-in electric fields on rhenium-vacancy-rich heterojunction interfaces of transition-metal dichalcogenides for pH-universal efficient hydrogen and electric energy generation 在富含铼空位的过渡金属二掺杂化合物异质结界面上实现内置电场,以实现 pH 值通用的高效氢能和电能发电
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-04-02 DOI: 10.1002/cey2.526
Benzhi Wang, Lixia Wang, Ji Hoon Lee, Tayirjan Taylor Isimjan, Hyung Mo Jeong, Xiulin Yang
{"title":"Enabling built-in electric fields on rhenium-vacancy-rich heterojunction interfaces of transition-metal dichalcogenides for pH-universal efficient hydrogen and electric energy generation","authors":"Benzhi Wang,&nbsp;Lixia Wang,&nbsp;Ji Hoon Lee,&nbsp;Tayirjan Taylor Isimjan,&nbsp;Hyung Mo Jeong,&nbsp;Xiulin Yang","doi":"10.1002/cey2.526","DOIUrl":"10.1002/cey2.526","url":null,"abstract":"<p>Most advanced hydrogen evolution reaction (HER) catalysts show high activity under alkaline conditions. However, the performance deteriorates at a natural and acidic pH, which is often problematic in practical applications. Herein, a rhenium (Re) sulfide–transition-metal dichalcogenide heterojunction catalyst with Re-rich vacancies (NiS<sub>2</sub>-ReS<sub>2</sub>-V) has been constructed. The optimized catalyst shows extraordinary electrocatalytic HER performance over a wide range of pH, with ultralow overpotentials of 42, 85, and 122 mV under alkaline, acidic, and neutral conditions, respectively. Moreover, the two-electrode system with NiS<sub>2</sub>-ReS<sub>2</sub>-V<sub>1</sub> as the cathode provides a voltage of 1.73 V at 500 mA cm<sup>−2</sup>, superior to industrial systems. Besides, the open-circuit voltage of a single Zn–H<sub>2</sub>O cell with NiS<sub>2</sub>-ReS<sub>2</sub>-V<sub>1</sub> as the cathode can reach an impressive 90.9% of the theoretical value, with a maximum power density of up to 31.6 mW cm<sup>−2</sup>. Moreover, it shows remarkable stability, with sustained discharge for approximately 120 h at 10 mA cm<sup>−2</sup>, significantly outperforming commercial Pt/C catalysts under the same conditions in all aspects. A series of systematic characterizations and theoretical calculations demonstrate that Re vacancies on the heterojunction interface would generate a stronger built-in electric field, which profoundly affects surface charge distribution and subsequently enhances HER performance.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photo-promoted rapid reconstruction induced alterations in active site of Ag@amorphous NiFe hydroxides for enhanced oxygen evolution reaction 光促进快速重构诱导 Ag@amorphous NiFe 氢氧化物活性位点的改变,以增强氧进化反应
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-04-02 DOI: 10.1002/cey2.543
Zhi Cai, Mingyuan Xu, Yanhong Li, Xinyan Zhou, Kexin Yin, Lidong Li, Binbin Jia, Lin Guo, Hewei Zhao
{"title":"Photo-promoted rapid reconstruction induced alterations in active site of Ag@amorphous NiFe hydroxides for enhanced oxygen evolution reaction","authors":"Zhi Cai,&nbsp;Mingyuan Xu,&nbsp;Yanhong Li,&nbsp;Xinyan Zhou,&nbsp;Kexin Yin,&nbsp;Lidong Li,&nbsp;Binbin Jia,&nbsp;Lin Guo,&nbsp;Hewei Zhao","doi":"10.1002/cey2.543","DOIUrl":"10.1002/cey2.543","url":null,"abstract":"<p>The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction (OER) performance, which has become an effective strategy for constructing the catalytic active phase. However, it remains a challenge to understand the mechanisms of reconstruction and to accomplish it fast and deeply. Here, we reported a photo-promoted rapid reconstruction (PRR) process on Ag nanoparticle-loaded amorphous Ni-Fe hydroxide nanosheets on carbon cloth for enhanced OER. The photogenerated holes generated by Ag in conjunction with the anodic potential contributed to a thorough reconstruction of the amorphous substrate. The valence state of unsaturated coordinated Fe atoms, which serve as active sites, is significantly increased, while the corresponding crystalline substrate shows little change. The different structural evolutions of amorphous and crystalline substrates during reconstruction lead to diverse pathways of OER. This PRR utilizing loaded noble metal nanoparticles can accelerate the generation of active species in the substrate and increase the electrical conductivity, which provides a new inspiration to develop efficient catalysts via reconstruction strategies.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore structure and oxygen content design of amorphous carbon toward a durable anode for potassium/sodium-ion batteries 设计无定形碳的孔隙结构和含氧量,使其成为钾/钠离子电池的耐用阳极
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-29 DOI: 10.1002/cey2.534
Xiaodong Shi, Chuancong Zhou, Yuxin Gao, Jinlin Yang, Yu Xie, Suyang Feng, Jie Zhang, Jing Li, Xinlong Tian, Hui Zhang
{"title":"Pore structure and oxygen content design of amorphous carbon toward a durable anode for potassium/sodium-ion batteries","authors":"Xiaodong Shi,&nbsp;Chuancong Zhou,&nbsp;Yuxin Gao,&nbsp;Jinlin Yang,&nbsp;Yu Xie,&nbsp;Suyang Feng,&nbsp;Jie Zhang,&nbsp;Jing Li,&nbsp;Xinlong Tian,&nbsp;Hui Zhang","doi":"10.1002/cey2.534","DOIUrl":"10.1002/cey2.534","url":null,"abstract":"<p>Both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are considered as promising candidates in grid-level energy storage devices. Unfortunately, the larger ionic radii of K<sup>+</sup> and Na<sup>+</sup> induce poor diffusion kinetics and cycling stability of carbon anode materials. Pore structure regulation is an ideal strategy to promote the diffusion kinetics and cyclic stability of carbon materials by facilitating electrolyte infiltration, increasing the transport channels, and alleviating the volume change. However, traditional pore-forming agent-assisted methods considerably increase the difficulty of synthesis and limit practical applications of porous carbon materials. Herein, porous carbon materials (Ca-PC/Na-PC/K-PC) with different pore structures have been prepared with gluconates as the precursors, and the amorphous structure, abundant micropores, and oxygen-doping active sites endow the Ca-PC anode with excellent potassium and sodium storage performance. For PIBs, the capacitive contribution ratio of Ca-PC is 82% at 5.0 mV s<sup>−1</sup> due to the introduction of micropores and high oxygen-doping content, while a high reversible capacity of 121.4 mAh g<sup>−1</sup> can be reached at 5 A g<sup>−1</sup> after 2000 cycles. For SIBs, stable sodium storage capacity of 101.4 mAh g<sup>−1</sup> can be achieved at 2 A g<sup>−1</sup> after 8000 cycles with a very low decay rate of 0.65% for per cycle. This work may provide an avenue for the application of porous carbon materials in the energy storage field.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultralow charge–discharge voltage gap of 0.05 V in sunlight-responsive neutral aqueous Zn–air battery 阳光响应型中性锌-空气水溶液电池中 0.05 V 的超低充放电电压间隙
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-28 DOI: 10.1002/cey2.535
Zhimin Niu, Yan Gao, Tianhui Wu, Fei Zhang, Ran Zhao, Zijia Chen, Yiming Yuan, Tifeng Jiao, Jianmin Gu, Li Lu, Desong Wang
{"title":"Ultralow charge–discharge voltage gap of 0.05 V in sunlight-responsive neutral aqueous Zn–air battery","authors":"Zhimin Niu,&nbsp;Yan Gao,&nbsp;Tianhui Wu,&nbsp;Fei Zhang,&nbsp;Ran Zhao,&nbsp;Zijia Chen,&nbsp;Yiming Yuan,&nbsp;Tifeng Jiao,&nbsp;Jianmin Gu,&nbsp;Li Lu,&nbsp;Desong Wang","doi":"10.1002/cey2.535","DOIUrl":"10.1002/cey2.535","url":null,"abstract":"<p>Rechargeable neutral aqueous zinc−air batteries (ZABs) are a promising type of energy storage device with longer operating life and less corrosiveness compared with conventional alkaline ZABs. However, the neutral ZABs normally possess poor oxygen evolution reactions (OERs) and oxygen reduction reactions performance, resulting in a large charge–discharge voltage gap and low round-trip efficiency. Herein, we demonstrate a sunlight-assisted strategy for achieving an ultralow voltage gap of 0.05 V in neutral ZABs by using the FeOOH-decorated BiVO<sub>4</sub> (Fe-BiVO<sub>4</sub>) as an oxygen catalyst. Under sunlight, the electrons move from the valence band (VB) of Fe-BiVO<sub>4</sub> to the conduction band producing holes in VB to promote the OER process and hence reduce the overpotential. Meanwhile, the photopotential generated by the Fe-BiVO<sub>4</sub> compensates a part of the charging potential of neutral ZABs. Accordingly, the energy loss of the battery could be compensated via solar energy, leading to a record-low gap of 0.05 V between the charge and discharge voltage with a high round-trip efficiency of 94%. This work offers a simple but efficient pathway for solar-energy utilization in storage devices, further guiding the design of high energy efficiency of neutral aqueous ZABs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.535","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 6, Number 3, March 2024 封面图片,第 6 卷第 3 号,2024 年 3 月
IF 20.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-28 DOI: 10.1002/cey2.568
Xiaofei Zhang, Wenhuan Huang, Le Yu, Max García-Melchor, Dingsheng Wang, Linjie Zhi, Huabin Zhang
{"title":"Cover Image, Volume 6, Number 3, March 2024","authors":"Xiaofei Zhang,&nbsp;Wenhuan Huang,&nbsp;Le Yu,&nbsp;Max García-Melchor,&nbsp;Dingsheng Wang,&nbsp;Linjie Zhi,&nbsp;Huabin Zhang","doi":"10.1002/cey2.568","DOIUrl":"https://doi.org/10.1002/cey2.568","url":null,"abstract":"<p><b><i>Front cover image</i></b>: The directional catalytic conversion of CO<sub>2</sub> into carboxylic acids via heterogeneous catalysis presents a promising pathway for achieving carbon neutrality and obtaining high-value chemicals. However, challenges such as CO<sub>2</sub> inertness and unsatisfactory product selectivity persist. In article number CEY2362, Zhang et al. summarize current research progress in producing carboxylic acids through photo-, electric-, and thermal catalysis, highlight strategies to construct catalysts, outline challenges and future research directions, offering insights into this area.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 3","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.568","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance 木质素衍生硬碳阳极与坚固的固体电解质间相,可提高钠储存性能
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-28 DOI: 10.1002/cey2.538
Jingqiang Zheng, Yulun Wu, Chaohong Guan, Danjun Wang, Yanqing Lai, Jie Li, Fuhua Yang, Simin Li, Zhian Zhang
{"title":"Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance","authors":"Jingqiang Zheng,&nbsp;Yulun Wu,&nbsp;Chaohong Guan,&nbsp;Danjun Wang,&nbsp;Yanqing Lai,&nbsp;Jie Li,&nbsp;Fuhua Yang,&nbsp;Simin Li,&nbsp;Zhian Zhang","doi":"10.1002/cey2.538","DOIUrl":"10.1002/cey2.538","url":null,"abstract":"<p>Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost, relatively low working voltage, and satisfactory specific capacity. However, it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources. In addition, the solid electrolyte interphase (SEI) is subjected to continuous rupture during battery cycling, leading to fast capacity decay. Herein, a lignin-based hard carbon with robust SEI is developed to address these issues, effectively killing two birds with one stone. An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon, which demonstrated an ultrahigh sodium storage capacity of 359 mAh g<sup>−1</sup>. It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin, dense, and organic-rich SEI. Benefiting from these merits, the as-developed SEI shows fast Na<sup>+</sup> transfer at the interphases and enhanced structural stability, thus preventing SEI rupture and reformation, and ultimately leading to a comprehensive improvement in sodium storage performance.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.538","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140372237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image, Volume 6, Number 3, March 2024 封底图片,第 6 卷第 3 号,2024 年 3 月
IF 20.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-28 DOI: 10.1002/cey2.569
Dae-Ho Son, Ha Kyung Park, Dae-Hwan Kim, Jin-Kyu Kang, Shi-Joon Sung, Dae-Kue Hwang, Jaebaek Lee, Dong-Hwan Jeon, Yunae Cho, William Jo, Taeseon Lee, JunHo Kim, Sang-Hoon Nam, Kee-Jeong Yang
{"title":"Back Cover Image, Volume 6, Number 3, March 2024","authors":"Dae-Ho Son,&nbsp;Ha Kyung Park,&nbsp;Dae-Hwan Kim,&nbsp;Jin-Kyu Kang,&nbsp;Shi-Joon Sung,&nbsp;Dae-Kue Hwang,&nbsp;Jaebaek Lee,&nbsp;Dong-Hwan Jeon,&nbsp;Yunae Cho,&nbsp;William Jo,&nbsp;Taeseon Lee,&nbsp;JunHo Kim,&nbsp;Sang-Hoon Nam,&nbsp;Kee-Jeong Yang","doi":"10.1002/cey2.569","DOIUrl":"https://doi.org/10.1002/cey2.569","url":null,"abstract":"<p><b><i>Back cover image</i></b>: In article number cey2.434, Yang and co-workers reported vertical plane depth-resolved surface potential and carrier separation characteristics in flexible Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> solar cells. The band energy structure was predicted between the intragrains and the grain boundaries. To minimize carrier recombination, it is necessary to form an upward band bending structure over the entire absorber at the grain boundaries and to form a current path in the intragrains.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 3","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.569","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The application of cellulosic-based materials on interfacial solar steam generation for highly efficient wastewater purification: A review 纤维素基材料在高效废水净化的界面太阳能蒸汽发电中的应用:综述
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-27 DOI: 10.1002/cey2.540
Haroon A. M. Saeed, Weilin Xu, Hongjun Yang
{"title":"The application of cellulosic-based materials on interfacial solar steam generation for highly efficient wastewater purification: A review","authors":"Haroon A. M. Saeed,&nbsp;Weilin Xu,&nbsp;Hongjun Yang","doi":"10.1002/cey2.540","DOIUrl":"10.1002/cey2.540","url":null,"abstract":"<p>The world's population is growing, leading to an increasing demand for freshwater resources for drinking, sanitation, agriculture, and industry. Interfacial solar steam generation (ISSG) can solve many problems, such as mitigating the power crisis, minimizing water pollution, and improving the purification and desalination of seawater, rivers/lakes, and wastewater. Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications. This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices, specifically focusing on their applications in water purification and desalination. This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials, such as cellulose nanofibers derived from different sources, carbonized wood materials, and two-dimensional (2D) and 3D cellulosic-based materials from various sources, as well as advanced cellulosic materials, including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes. The focus is on exploring the potential applications of these materials in ISSG devices for water desalination, purification, and treatment. The function, advantages, and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion. In addition, the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination, purification, and treatment were also emphasized.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.540","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignin-derived carbon with pyridine N-B doping and a nanosandwich structure for high and stable lithium storage 掺杂吡啶 N-B 和纳米三明治结构的木质素衍生碳可实现高稳定锂存储
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-22 DOI: 10.1002/cey2.511
Dichao Wu, Jiayuan Li, Yuying Zhao, Ao Wang, Gaoyue Zhang, Jianchun Jiang, Mengmeng Fan, Kang Sun
{"title":"Lignin-derived carbon with pyridine N-B doping and a nanosandwich structure for high and stable lithium storage","authors":"Dichao Wu,&nbsp;Jiayuan Li,&nbsp;Yuying Zhao,&nbsp;Ao Wang,&nbsp;Gaoyue Zhang,&nbsp;Jianchun Jiang,&nbsp;Mengmeng Fan,&nbsp;Kang Sun","doi":"10.1002/cey2.511","DOIUrl":"10.1002/cey2.511","url":null,"abstract":"<p>Biomass-derived carbon is a promising electrode material in energy storage devices. However, how to improve its low capacity and stability, and slow diffusion kinetics during lithium storage remains a challenge. In this research, we propose a “self-assembly-template” method to prepare B, N codoped porous carbon (BN-C) with a nanosandwich structure and abundant pyridinic N-B species. The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film, shortening the Li<sup>+</sup> diffusion pathway, and accommodating volume expansion during repeated charging/discharging. The abundant pyridinic N-B species can simultaneously promote the adsorption/desorption of Li<sup>+</sup>/PF<sub>6</sub><sup>−</sup> and reduce the diffusion barrier. The BN-C electrode showed a high lithium-ion storage capacity of above 1140 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup> and superior stability (96.5% retained after 2000 cycles). Moreover, owing to the synergistic effect of the nanosandwich structure and pyridinic N-B species, the assembled symmetrical BN-C//BN-C full cell shows a high energy density of 234.7 W h kg<sup>−1</sup>, high power density of 39.38 kW kg<sup>−1</sup>, and excellent cycling stability, superior to most of the other cells reported in the literature. As the density functional theory simulation demonstrated, pyridinic N-B shows enhanced adsorption activity for Li<sup>+</sup> and PF<sub>6</sub><sup>−</sup>, which promotes an increase in the capacity of the anode and cathode, respectively. Meanwhile, the relatively lower diffusion barrier of pyridinic N-B promotes Li<sup>+</sup> migration, resulting in good rate performance. Therefore, this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 8","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Driving inward growth of lithium metal in hollow microcapsule hosts by heteroatom-controlled nucleation 通过杂原子控制成核推动金属锂在空心微囊宿主中向内生长
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-03-20 DOI: 10.1002/cey2.525
Siwon Kim, Hong Rim Shin, Ki Jae Kim, Min-Sik Park, Jong-Won Lee
{"title":"Driving inward growth of lithium metal in hollow microcapsule hosts by heteroatom-controlled nucleation","authors":"Siwon Kim,&nbsp;Hong Rim Shin,&nbsp;Ki Jae Kim,&nbsp;Min-Sik Park,&nbsp;Jong-Won Lee","doi":"10.1002/cey2.525","DOIUrl":"10.1002/cey2.525","url":null,"abstract":"<p>The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits. Three-dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity; however, uncontrollable and nonuniform deposition of Li remains a challenge. In this study, we synthesize metal–organic framework-derived carbon microcapsules with heteroatom clusters (Zn and Ag) on the capsule walls and it is demonstrated that Ag-assisted nucleation of Li metal alters the outward-to-inward growth in the microcapsule host. Zn-incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework-8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag<sup>+</sup> and metallic Zn. Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating. Through combined electrochemical, microstructural, and computational studies, we verify the beneficial role of Ag-assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and, in turn, enhancing electrochemical performance. This study provides new insights into the design of reversible host materials for practical Li metal batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 8","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信