{"title":"Back Cover Image, Volume 6, Number 8, August 2024","authors":"Jundong Zhong, Tingting Xu, Hongyan Qi, Weibo Sun, Shuang Zhao, Zhe Zhao, Yirong Sun, Youliang Zhu, Jianxin Mu, Haibo Zhang, Xuanbo Zhu, Zhenhua Jiang, Lei Jiang","doi":"10.1002/cey2.653","DOIUrl":"https://doi.org/10.1002/cey2.653","url":null,"abstract":"<p><b><i>Back cover image</i></b>: The ion transport properties of porous membrane materials are essential in numerous applications, and achieving synergistic enhancement of both permeability and selectivity remains a significant challenge. In the article number cey2.458, Zhu and co-workers reported a strategy to address this challenge by developing a charge-tunable nanofluidic membrane. Inserting chargetunable copolymers into GO membranes, effectively matches the charge density of the membrane with the pore size. This synergistic enhancement strategy led to a nearly 10-fold increase in osmotic energy generation, and it was expected to optimize the energy structure and promote the utilization and conversion of clean energy in the future.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 8","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon EnergyPub Date : 2024-08-26DOI: 10.1002/cey2.584
Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao
{"title":"Enhancing the electrochemical performance of semicoke-based hard carbon anode through oxidation-crosslinking strategy for low-cost sodium-ion batteries","authors":"Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao","doi":"10.1002/cey2.584","DOIUrl":"10.1002/cey2.584","url":null,"abstract":"<p>Semicoke, a coal pyrolysis product, is a cost-effective and high-yield precursor for hard carbon used as anode in sodium-ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high-temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation-crosslinking strategy to realize fusion-to-solid-state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali-oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross-linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant -C-(O)–O- groups (up to 21 at% oxygen content). The -C-(O)–O- groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke-based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g<sup>−1</sup>, with low-voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X-ray diffraction analysis, the plateau capacity of semicoke-based hard carbon is mainly derived from interlayer intercalation of Na<sup>+</sup> ion. The proposed oxidation-crosslinking strategy can contribute to the usage of low-cost and high-performance hard carbons in advanced SIBs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon EnergyPub Date : 2024-08-23DOI: 10.1002/cey2.601
Chenxiao Chu, Chunting Wang, Weisong Meng, Feipeng Cai, Bo Wang, Nana Wang, Jian Yang, Zhongchao Bai
{"title":"Interfacial chemistry and structural engineering modified carbon fibers for stable sodium metal anodes","authors":"Chenxiao Chu, Chunting Wang, Weisong Meng, Feipeng Cai, Bo Wang, Nana Wang, Jian Yang, Zhongchao Bai","doi":"10.1002/cey2.601","DOIUrl":"10.1002/cey2.601","url":null,"abstract":"<p>Sodium (Na) metal stands out as a highly promising anode material for high-energy-density Na batteries owing to its abundant resources and exceptional theoretical capacity at low redox potential. Nevertheless, the uncontrolled growth of Na dendrites and the accompanying volumetric changes during the plating/stripping process lead to safety concerns and poor electrochemical performances. This study introduces nitrogen and oxygen co-doped carbon nanofiber networks wrapped carbon felt (NO-CNCF), serving as Na deposition skeletons to facilitate a highly reversible Na metal anode. The NO-CNCF framework with uniformly distributed “sodiophilic” functional groups, nanonetwork protuberances, and cross-linked network scaffold structure can avoid charge accumulation and facilitate the dendrite-free Na deposition. Benefiting from these features, the NO-CNCF@Na symmetrical cells demonstrate notable enhancements in cycling stability, achieving 4000 h cycles at 1 mA cm<sup>−2</sup> for 1 mAh cm<sup>−2</sup> and 2400 h cycles at 2 mA cm<sup>−2</sup> for 2 mAh cm<sup>−2</sup> with voltage overpotential of approximately 6 and 10 mV, respectively. Furthermore, the NVP//NO-CNCF@Na full cells achieve stable cycling performance and favorable rate capability. This investigation offers novel insights into fabricating a “sodiophilic” matrix with a multistage structure toward high-performance Na metal batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon EnergyPub Date : 2024-08-23DOI: 10.1002/cey2.578
Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun
{"title":"Improving reaction uniformity of high-loading lithium-sulfur pouch batteries","authors":"Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun","doi":"10.1002/cey2.578","DOIUrl":"10.1002/cey2.578","url":null,"abstract":"<p>Lithium-sulfur batteries (LSBs) have garnered attention from both academia and industry because they can achieve high energy densities (>400 Wh kg<sup>–1</sup>), which are difficult to achieve in commercially available lithium-ion batteries. As a preparation step for practically utilizing LSBs, there is a problem, wherein battery cycle life rapidly reduces as the loading level of the sulfur cathode increases and the electrode area expands. In this study, a separator coated with boehmite on both sides of polyethylene (hereinafter denoted as boehmite separator) is incorporated into a high-loading Li-S pouch battery to suppress sudden capacity drops and achieve a longer cycle life. We explore a phenomenon by which inequality is generated in regions where an electrochemical reaction occurs in the sulfur cathode during the discharging and charging of a high-capacity Li-S pouch battery. The boehmite separator inhibits the accumulation of sulfur-related species on the surface of the sulfur cathode to induce an even reaction across the entire cathode and suppresses the degradation of the Li metal anode, allowing the pouch battery with an areal capacity of 8 mAh cm<sup>–2</sup> to operate stably for 300 cycles. These results demonstrate the importance of customizing separators for the practical use of LSBs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 11","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.578","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon EnergyPub Date : 2024-08-23DOI: 10.1002/cey2.603
Xinlong Liu, Bingang Xu, Shenzhen Deng, Jing Han, Yongling An, Jingxin Zhao, Qingjun Yang, Yana Xiao, Cuiqin Fang
{"title":"Ion-sieving MXene flakes with quantum dots enable high plating capacity for dendrite-free Zn anodes","authors":"Xinlong Liu, Bingang Xu, Shenzhen Deng, Jing Han, Yongling An, Jingxin Zhao, Qingjun Yang, Yana Xiao, Cuiqin Fang","doi":"10.1002/cey2.603","DOIUrl":"10.1002/cey2.603","url":null,"abstract":"<p>The commercial utilization of Zn metal anodes with high plating capacity is significantly hindered by the uncontrolled growth of dendrites and associated side reactions. Herein, a robust artificial ion-sieving MXene flake (MXF)-coating layer, with abundant polar terminated groups, is constructed to regulate the interfacial Zn<sup>2+</sup> deposition behavior. In particular, the fragmented MXF coupled with in situ generated quantum dots not only has strong Zn affinity to homogenize electric fields but also generates numerous zincophilic sites to reduce nucleation energy, thus securing a uniform dendrite-free surface. Additionally, the porous coating layer with polar groups allows the downward diffusion of Zn<sup>2+</sup> to achieve bottom-up deposition and repels the excessive free water and anions to prevent parasitic reactions. The ion-sieving effect of MXF is firmly verified in symmetric cells with high areal capacity of 10–40 mAh cm<sup>−2</sup> (1.0 mA cm<sup>−2</sup>) and depth of discharge of 15%–60%. Therefore, the functional MXF-coated anode manifests long-term cycling with 2700 h of stable plating/stripping in Zn||Zn cell. Such rational design of MXF protective layer breaks new ground in developing high plating capacity zinc anodes for practical applications.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface sulfidation constructing gradient heterojunctions for high-efficiency (approaching 18%) HTL-free carbon-based inorganic perovskite solar cells","authors":"Xiaonan Huo, Jinqing Lv, Kexiang Wang, Weiwei Sun, Weifeng Liu, Ran Yin, Yansheng Sun, Yukun Gao, Tingting You, Penggang Yin","doi":"10.1002/cey2.586","DOIUrl":"10.1002/cey2.586","url":null,"abstract":"<p>Due to the advantages of cost-effectiveness and tunable band gap, hole transport layer (HTL)-free CsPbI<sub><i>X</i></sub>Br<sub>3−<i>X</i></sub> carbon-based inorganic perovskite solar cells (C-IPSCs) are emerging candidates for both single junction and tandem solar cells. Because of the direct contact between the carbon electrode and the perovskite surface, energy barriers and defects at the interface limit the enhancement of power conversion efficiency (PCE). In this work, we first reported a preparation method of CsPbI<sub>2.75</sub>Br<sub>0.25</sub> HTL-free C-IPSCs and developed an effective surface sulfidation regulation (SSR) strategy to promote hole extraction and inhibit non-radiative recombination of inorganic perovskite by 2-(thiocyanomethylthio)benzothiazole (TCMTB) surface modification. The introduced S<sup>2−</sup> anions form strong binding with uncoordinated Pb ions, inhibit the perovskite degradation reaction, and effectively passivate the surface defects. In addition, PbS formed by the SSR strategy constructed a gradient heterojunction, which promoted the arrangement energy levels and enhanced hole extraction. An additional back-surface field is induced at the interface of perovskite by energy band bending, which increases the open-circuit voltage (V<sub>OC</sub>). As a result, the SSR-based CsPbI<sub>2.75</sub>Br<sub>0.25</sub> HTL-free C-IPSCs showed a PCE of 17.88% with a fill factor of 81.56% and V<sub>OC</sub> of 1.19 V, which was among the highest reported values of CsPbI<sub>2.75</sub>Br<sub>0.25</sub> HTL-free C-IPSCs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-temperature performance of Na-ion batteries","authors":"Meng Li, Haoxiang Zhuo, Qihang Jing, Yang Gu, Zhou Liao, Kuan Wang, Jiangtao Hu, Dongsheng Geng, Xueliang Sun, Biwei Xiao","doi":"10.1002/cey2.546","DOIUrl":"10.1002/cey2.546","url":null,"abstract":"<p>Sodium-ion batteries (NIBs) have become an ideal alternative to lithium-ion batteries in the field of electrochemical energy storage due to their abundant raw materials and cost-effectiveness. With the progress of human society, the requirements for energy storage systems in extreme environments, such as deep-sea exploration, aerospace missions, and tunnel operations, have become more stringent. The comprehensive performance of NIBs at low temperatures (LTs) has also become an important consideration. Under LT conditions, challenges such as increased viscosity of electrolyte, abnormal growth of solid electrolyte interface, and poor contact between collector and electrode materials emerge. The aforementioned issues hinder the diffusion kinetics of sodium ions (Na<sup>+</sup>) at the electrode/electrolyte interface and cause rapid degradation of battery performance. Consequently, the optimization of electrolyte composition and cathode/anode materials becomes an effective approach to improve LT performance. This review discusses the conduction behavior and limiting factors of Na<sup>+</sup> in both solid electrodes and liquid electrolytes at LT. Furthermore, it systematically reviews the recent research progress of LT NIBs from three aspects: cathode materials, anode materials, and electrolyte components. This review aims to provide a valuable reference for developing high-performance LT NIBs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption","authors":"Feiyue Hu, Pei Ding, Fushuo Wu, Peigen Zhang, Wei Zheng, Wenwen Sun, Rui Zhang, Longzhu Cai, Bingbing Fan, ZhengMing Sun","doi":"10.1002/cey2.638","DOIUrl":"10.1002/cey2.638","url":null,"abstract":"<p>One-dimensional (1D) metals are well known for their exceptional conductivity and their ease of formation of interconnected networks that facilitate electron migration, making them promising candidates for electromagnetic (EM) attenuation. However, the impedance mismatch from high conductivity and their singular mode of energy loss hinder effective EM wave dissipation. Construction of cable structures not only optimizes impedance matching but also introduces a multitude of heterojunctions, increasing attenuation modes and potentially enhancing EM wave absorption (EMA) performance. Herein, we showcase the scalable synthesis of tin (Sn) whiskers from a Ti<sub>2</sub>SnC MAX phase precursor, followed by creation of a 1D tin@carbon (Sn@C) cable structure through polymerization of PDA on their surface and annealing in argon. The EMA capabilities of Sn@C significantly surpass those of uncoated Sn whiskers, with an effective absorption bandwidth reaching 7.4 GHz. Remarkably, its maximum radar cross section reduction value of 27.85 dB m<sup>2</sup> indicates its exceptional stealth capabilities. The enhanced EMA performance is first attributed to optimized impedance matching, and furthermore, the Sn@C cable structures have rich SnO<sub>2</sub>/C and Sn/SnO<sub>2</sub> heterointerfaces and the associated defects, which increase interfacial and defect-induced polarization losses, as visually demonstrated by off-axis electron holography. The development of the Sn@C cable structure represents a notable advancement in broadening the scope of materials with potential applications in stealth technology, and this study also contributes to the understanding of how heterojunctions can improve EMA performance.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.638","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon EnergyPub Date : 2024-08-02DOI: 10.1002/cey2.595
Hainan Sun, Xiaomin Xu, Gao Chen, Zongping Shao
{"title":"Perovskite oxides as electrocatalysts for water electrolysis: From crystalline to amorphous","authors":"Hainan Sun, Xiaomin Xu, Gao Chen, Zongping Shao","doi":"10.1002/cey2.595","DOIUrl":"10.1002/cey2.595","url":null,"abstract":"<p>Crystalline perovskite oxides are regarded as promising electrocatalysts for water electrolysis, particularly for anodic oxygen evolution reactions, owing to their low cost and high intrinsic activity. Perovskite oxides with noncrystalline or amorphous characteristics also exhibit promising electrocatalytic performance toward electrochemical water splitting. In this review, a fundamental understanding of the characteristics and advantages of crystalline, noncrystalline, and amorphous perovskite oxides is presented. Subsequently, recent progress in the development of advanced electrocatalysts for water electrolysis by engineering and breaking the crystallinity of perovskite oxides is reviewed, with a special focus on the underlying structure–activity relationships. Finally, the remaining challenges and unsolved issues are presented, and an outlook is briefly proposed for the future exploration of next-generation water-splitting electrocatalysts based on perovskite oxides.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 11","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon EnergyPub Date : 2024-08-02DOI: 10.1002/cey2.633
Baolin Xing, Feng Shi, Zhanzhan Jin, Huihui Zeng, Xiaoxiao Qu, Guangxu Huang, Chuanxiang Zhang, Yunkai Xu, Zhengfei Chen, Jun Lu
{"title":"A facile ice-templating-induced puzzle coupled with carbonization strategy for kilogram-level production of porous carbon nanosheets as high-capacity anode for lithium-ion batteries","authors":"Baolin Xing, Feng Shi, Zhanzhan Jin, Huihui Zeng, Xiaoxiao Qu, Guangxu Huang, Chuanxiang Zhang, Yunkai Xu, Zhengfei Chen, Jun Lu","doi":"10.1002/cey2.633","DOIUrl":"10.1002/cey2.633","url":null,"abstract":"<p>Two-dimensional porous carbon nanosheets (PCNSs) are considered promising anodes for lithium-ion batteries due to their synergetic features arising from both graphene and porous structures. Herein, using naturally abundant and biocompatible sodium humate (SH) as the precursor, PCNSs are prepared from the laboratory scale up to the kilogram scale by a method of a facile ice-templating-induced puzzle coupled with a carbonization strategy. Such obtained SH-derived PCNSs (SH-PCNSs) possess a hierarchical porous structure dominated by mesopores having a specific surface area (~127.19 <sup>2</sup> g<sup>−1</sup>), pore volume (~0.134 cm<sup>3</sup> g<sup>−1</sup>), sheet-like morphology (~2.18 nm in thickness), and nitrogen/oxygen-containing functional groups. Owing to these merits, the SH-PCNSs present impressive Li-ion storage characteristics, including high reversible capacity (1011 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>), excellent rate capability (465 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>), and superior cycle stability (76.8% capacitance retention after 1000 cycles at 5 A g<sup>−1</sup>). It is noted that the SH-PCNSs prepared from the kilogram-scale production procedure possess comparable electrochemical properties. Furthermore, coupling with a LiNi<sub>1/3</sub>Co<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> cathode, the full cells deliver a high capacity of 167 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> and exhibit an outstanding energy density of 128.8 Wh kg<sup>−1</sup>, highlighting the practicability of this porous carbon nanosheets and the potential commercial opportunity of the scalable processing approach.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}