{"title":"光电催化水分解单原子催化剂的研究进展","authors":"Jiao Yang, Xiaoyang Zheng, Syed Shoaib Ahmad Shah, Chao Wang, Xueyao Li, Zhishuo Yan, Lishan Peng","doi":"10.1002/cey2.695","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen is a highly promising energy carrier because of its renewable and clean qualities. Among the different methods for H<sub>2</sub> production, photoelectrocatalysis (PEC) water splitting has garnered significant interest, thanks to the abundant and perennial solar energy. Single-atom catalysts (SACs), which feature well-distributed atoms anchored on supports, have gained great attention in PEC water splitting for their unique advantages in overcoming the limitations of conventional PEC reactions. Herein, we comprehensively review SAC-incorporated photoelectrocatalysts for efficient PEC water splitting. We begin by highlighting the benefits of SACs in improving charge transfer, catalytic selectivity, and catalytic activity, which address the limitations of conventional PEC reactions. Next, we provide a comprehensive overview of established synthetic techniques for optimizing the properties of SACs, along with modern characterization methods to confirm their unique structures. Finally, we discuss the challenges and future directions in basic research and advancements, providing insights and guidance for this developing field.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 4","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.695","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Single-Atom Catalysts for Photoelectrocatalytic Water Splitting\",\"authors\":\"Jiao Yang, Xiaoyang Zheng, Syed Shoaib Ahmad Shah, Chao Wang, Xueyao Li, Zhishuo Yan, Lishan Peng\",\"doi\":\"10.1002/cey2.695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen is a highly promising energy carrier because of its renewable and clean qualities. Among the different methods for H<sub>2</sub> production, photoelectrocatalysis (PEC) water splitting has garnered significant interest, thanks to the abundant and perennial solar energy. Single-atom catalysts (SACs), which feature well-distributed atoms anchored on supports, have gained great attention in PEC water splitting for their unique advantages in overcoming the limitations of conventional PEC reactions. Herein, we comprehensively review SAC-incorporated photoelectrocatalysts for efficient PEC water splitting. We begin by highlighting the benefits of SACs in improving charge transfer, catalytic selectivity, and catalytic activity, which address the limitations of conventional PEC reactions. Next, we provide a comprehensive overview of established synthetic techniques for optimizing the properties of SACs, along with modern characterization methods to confirm their unique structures. Finally, we discuss the challenges and future directions in basic research and advancements, providing insights and guidance for this developing field.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":24.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.695\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.695\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.695","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent Advances in Single-Atom Catalysts for Photoelectrocatalytic Water Splitting
Hydrogen is a highly promising energy carrier because of its renewable and clean qualities. Among the different methods for H2 production, photoelectrocatalysis (PEC) water splitting has garnered significant interest, thanks to the abundant and perennial solar energy. Single-atom catalysts (SACs), which feature well-distributed atoms anchored on supports, have gained great attention in PEC water splitting for their unique advantages in overcoming the limitations of conventional PEC reactions. Herein, we comprehensively review SAC-incorporated photoelectrocatalysts for efficient PEC water splitting. We begin by highlighting the benefits of SACs in improving charge transfer, catalytic selectivity, and catalytic activity, which address the limitations of conventional PEC reactions. Next, we provide a comprehensive overview of established synthetic techniques for optimizing the properties of SACs, along with modern characterization methods to confirm their unique structures. Finally, we discuss the challenges and future directions in basic research and advancements, providing insights and guidance for this developing field.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.