Carbon Energy最新文献

筛选
英文 中文
Back Cover Image, Volume 6, Number 11, November 2024 封底图片,第6卷,第11期,2024年11月
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-11-27 DOI: 10.1002/cey2.705
Takashi Hakari, Yuto Kameoka, Kaihei Kishida, Shinji Ozaki, Chihiro Murata, Minako Deguchi, Ryo Harada, Tomoki Fujisawa, Yusuke Mizuno, Heisuke Nishikawa, Tomoyuki Tamura, Yiqun Wang, Hikari Takahara, Takashi Aoki, Tokuo Inamasu, Daisuke Okuda, Masashi Ishikawa
{"title":"Back Cover Image, Volume 6, Number 11, November 2024","authors":"Takashi Hakari,&nbsp;Yuto Kameoka,&nbsp;Kaihei Kishida,&nbsp;Shinji Ozaki,&nbsp;Chihiro Murata,&nbsp;Minako Deguchi,&nbsp;Ryo Harada,&nbsp;Tomoki Fujisawa,&nbsp;Yusuke Mizuno,&nbsp;Heisuke Nishikawa,&nbsp;Tomoyuki Tamura,&nbsp;Yiqun Wang,&nbsp;Hikari Takahara,&nbsp;Takashi Aoki,&nbsp;Tokuo Inamasu,&nbsp;Daisuke Okuda,&nbsp;Masashi Ishikawa","doi":"10.1002/cey2.705","DOIUrl":"https://doi.org/10.1002/cey2.705","url":null,"abstract":"<p><b><i>Back cover image</i></b>: A lightweight battery has been successfully created using a cathode that uses sulfur, which is abundant as a resource, as the active material. The battery uses an electrolyte solution and is lightweight, with the goal of becoming a power source for next-generation aircraft. The graphic depicts the mining of abundant sulfur, which is then delivered to a large battery center by a series of transportation systems. It also symbolically shows that the battery that takes off from that battery center powers the aircraft. The fact that both the batteries on the ground and in the air have an liquid electrolyte is shown in translucent form. Furthermore, the present graphic implies that the electricity stored in the batteries is generated by hydroelectric power, a renewable energy source, and together with the green ground, giving the impression of the total system that is environmentally friendly.</p><p>Article number: 10.1002/cey2.585</p><p>Takashi Hakari &amp; Masashi Ishikawa\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 11","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 6, Number 11, November 2024 封面图片,第6卷,第11期,2024年11月
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-11-27 DOI: 10.1002/cey2.704
Zhijian Du, La Li, Guozhen Shen
{"title":"Cover Image, Volume 6, Number 11, November 2024","authors":"Zhijian Du,&nbsp;La Li,&nbsp;Guozhen Shen","doi":"10.1002/cey2.704","DOIUrl":"https://doi.org/10.1002/cey2.704","url":null,"abstract":"<p><b><i>Front cover image</i></b>: Proton-conducting hydrogel is one of the most attractive candidates as an electrolyte for assembling into a thermally chargeable supercapacitor (TCSC). In article cey2.562, Shen et al. proposed a high performance thermoelectric and photo-thermoelectric dual-output TCSC by attaching binder-free Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene@PPy electrodes to both ends of a terpolymer proton-conducting hydrogel. The real-time human movement and health monitoring of the strain sensor powered by assembled TCSC devices are successfully realized.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 11","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image, Volume 6, Number 10, October 2024 封底图片,第 6 卷第 10 号,2024 年 10 月
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-10-25 DOI: 10.1002/cey2.688
Qihang Ding, Zewen Jiang, Kean Chen, Hui Li, Jingzhe Shi, Xinping Ai, Dingguo Xia
{"title":"Back Cover Image, Volume 6, Number 10, October 2024","authors":"Qihang Ding,&nbsp;Zewen Jiang,&nbsp;Kean Chen,&nbsp;Hui Li,&nbsp;Jingzhe Shi,&nbsp;Xinping Ai,&nbsp;Dingguo Xia","doi":"10.1002/cey2.688","DOIUrl":"https://doi.org/10.1002/cey2.688","url":null,"abstract":"<p><b><i>Back cover image</i></b>: High-voltage LiCoO<sub>2</sub> can deliver a high capacity and therefore significantly boost the energy density of Li-ion batteries. However, its poor cyclability is still an issue for commercial applications. In article number CEY2-2024-0118, Ding et al. proposed a facile but effective methode to address this issue by constructing a LiF modification layer on LiCoO<sub>2</sub> surface via pyrolysis of the lithiated polyvinylidene fluoride pre-coating under air atmosphere. The as-fabricated LiF layer can effectively suppress the interfacial side reactions and surface structure degradation, and thereby greatly enhance the cycling stability of LiCoO<sub>2</sub> cathode at high charge cutoff voltage of 4.6 V.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 6, Number 10, October 2024 封面图片,第 6 卷第 10 号,2024 年 10 月
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-10-25 DOI: 10.1002/cey2.687
Li-Feng Zhou, Jia-Yang Li, Jian Peng, Li-Ying Liu, Hang Zhang, Yi-Song Wang, Yameng Fan, Jia-Zhao Wang, Tao Du
{"title":"Cover Image, Volume 6, Number 10, October 2024","authors":"Li-Feng Zhou,&nbsp;Jia-Yang Li,&nbsp;Jian Peng,&nbsp;Li-Ying Liu,&nbsp;Hang Zhang,&nbsp;Yi-Song Wang,&nbsp;Yameng Fan,&nbsp;Jia-Zhao Wang,&nbsp;Tao Du","doi":"10.1002/cey2.687","DOIUrl":"https://doi.org/10.1002/cey2.687","url":null,"abstract":"<p><b><i>Front cover image</i></b>: Phosphate cathodes in aqueous zinc-based batteries have garnered significant research interest for large-scale green energy storage. However, unclear mechanisms are hindering the progress of their research and application. In article number CEY2-2024-0147, various categories of phosphate materials used as zinc-based battery cathodes are summarized. The article discusses current advances and critical perspectives, aiming to elucidate the structural and chemical information related to Zn2+ storage mechanisms in phosphate cathodes using advanced characterization techniques.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting 基于 V2C-MXene 的电催化剂的界面和掺杂工程,以增强整体水分离的电催化性能
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-10-23 DOI: 10.1002/cey2.583
Yousen Wu, Jinlong Li, Guozhe Sui, Dong-Feng Chai, Yue Li, Dongxuan Guo, Dawei Chu, Kun Liang
{"title":"Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting","authors":"Yousen Wu,&nbsp;Jinlong Li,&nbsp;Guozhe Sui,&nbsp;Dong-Feng Chai,&nbsp;Yue Li,&nbsp;Dongxuan Guo,&nbsp;Dawei Chu,&nbsp;Kun Liang","doi":"10.1002/cey2.583","DOIUrl":"https://doi.org/10.1002/cey2.583","url":null,"abstract":"<p>The restacking and oxidizable nature of vanadium-based carbon/nitride (V<sub>2</sub>C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V<sub>2</sub>C/V<sub>2</sub>O<sub>3</sub> electrocatalyst is constructed via mild H<sub>2</sub>O<sub>2</sub> oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H<sub>2</sub>O<sub>2</sub> creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm<sup>−2</sup>, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm<sup>−2</sup>. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.583","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image, Volume 6, Number 9, September 2024 封底图片,第 6 卷第 9 号,2024 年 9 月
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-09-30 DOI: 10.1002/cey2.660
Qi Lai, Bincen Yin, Yu Dou, Qing Zhang, Yunhai Zhu, Yingkui Yang
{"title":"Back Cover Image, Volume 6, Number 9, September 2024","authors":"Qi Lai,&nbsp;Bincen Yin,&nbsp;Yu Dou,&nbsp;Qing Zhang,&nbsp;Yunhai Zhu,&nbsp;Yingkui Yang","doi":"10.1002/cey2.660","DOIUrl":"https://doi.org/10.1002/cey2.660","url":null,"abstract":"<p><b><i>Back cover image</i></b>: To achieve high-performance practical batteries, synergistically engineering intrinsic defects and heterostructures of metal oxide electrodes is highly desirable but remains challenging. In article number cey2.517, Yang <i>et al.</i> report on the crafting of hierarchically-electrospun carbon nanofibers integrated with oxygen vacancies-enriched V<sub>2</sub>O<sub>3</sub> nanosheets. Accordingly, the as-fabricated V<sub>2</sub>O<sub>3</sub> anode shows high reversible capacity, superior rate capability, and long cycling stability. An all-electrospun full-battery with an electrospun V<sub>2</sub>O<sub>5</sub> cathode and an electrospun polyimide separator is further assembled that delivers an impressive energy density at the high power density.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 6, Number 9, September 2024 封面图片,第 6 卷第 9 号,2024 年 9 月
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-09-30 DOI: 10.1002/cey2.659
Vaiyapuri Soundharrajan, Sungjin Kim, Subramanian Nithiananth, Muhammad H. Alfaruqi, JunJi Piao, Duong Tung Pham, Vinod Mathew, Sang A. Han, Jung Ho Kim, Jaekook Kim
{"title":"Cover Image, Volume 6, Number 9, September 2024","authors":"Vaiyapuri Soundharrajan,&nbsp;Sungjin Kim,&nbsp;Subramanian Nithiananth,&nbsp;Muhammad H. Alfaruqi,&nbsp;JunJi Piao,&nbsp;Duong Tung Pham,&nbsp;Vinod Mathew,&nbsp;Sang A. Han,&nbsp;Jung Ho Kim,&nbsp;Jaekook Kim","doi":"10.1002/cey2.659","DOIUrl":"https://doi.org/10.1002/cey2.659","url":null,"abstract":"<p><b><i>Front cover image</i></b>: The cover picture shows the selection and theoretical validation of transition metal ions for constructing a new class of cathode material, Na<sub>3</sub>VFe<sub>0.5</sub>Ti<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>/C, with NASICON-type structure for SIBs. The combination of V, Fe and Ti elements allows Na<sup>+</sup> ions to mobile without stress in the cathode, which results in stable electrochemical characteristics. In article number https://doi.org/10.1002/cey2.551, <i><b>Soundharrajan</b></i> et al.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.659","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable nitrogen photofixation: Considerations on the state of the art of non critical carbon materials 可持续的氮光固化:对非关键碳材料最新技术的思考
IF 20.5 1区 材料科学
Carbon Energy Pub Date : 2024-09-19 DOI: 10.1002/cey2.545
Federica Valentini, Amalia M. Grigoras, Luigi Vaccaro, Loredana Latterini
{"title":"Sustainable nitrogen photofixation: Considerations on the state of the art of non critical carbon materials","authors":"Federica Valentini, Amalia M. Grigoras, Luigi Vaccaro, Loredana Latterini","doi":"10.1002/cey2.545","DOIUrl":"https://doi.org/10.1002/cey2.545","url":null,"abstract":"The achievement of a carbon-neutral energy economy is nowadays mandatory to face global warming and the current energy crisis. To mitigate the present and future environmental issues, replacing fossil feedstocks with renewable sources is of primary importance, aiming to meet future generations' demands for energy and commodities. In light of this, the revamp of the ammonia synthesis, which today consumes almost 2% of the energy globally produced, gained increasing interest. The ammonia generation by reacting air and water and using sunlight as an inexhaustible source of energy is the closest approach to the ideal situation for zero-carbon energy and chemical production. To promote solar-to-ammonia production, the photocatalyst plays a crucial role. However, for large-scale implementation and long-term utilization, the selection of noncritical raw materials in catalyst preparation is central aiming at resource security. In this context, herein are reviewed different strategies developed to improve the photocatalytic performances of carbon-based materials. The introduction of vacancies and surface doping are discussed as valuable approaches to enhance the photocatalytic activity in the nitrogen fixation reactions, as well as the construction of heterojunctions to finely tune the electronic properties of carbon-based materials.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"9 1","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite electrolytes and interface designs for progressive solid-state sodium batteries 用于渐进式固态钠电池的复合电解质和界面设计
IF 19.5 1区 材料科学
Carbon Energy Pub Date : 2024-09-12 DOI: 10.1002/cey2.628
Junyu Hou, Tianke Zhu, Gang Wang, Rongrong Cheacharoen, Wu Sun, Xingyu Lei, Qunyao Yuan, Dalin Sun, Jie Zhao
{"title":"Composite electrolytes and interface designs for progressive solid-state sodium batteries","authors":"Junyu Hou,&nbsp;Tianke Zhu,&nbsp;Gang Wang,&nbsp;Rongrong Cheacharoen,&nbsp;Wu Sun,&nbsp;Xingyu Lei,&nbsp;Qunyao Yuan,&nbsp;Dalin Sun,&nbsp;Jie Zhao","doi":"10.1002/cey2.628","DOIUrl":"10.1002/cey2.628","url":null,"abstract":"<p>Solid-state sodium batteries (SSSBs) are poised to replace lithium-ion batteries as viable alternatives for energy storage systems owing to their high safety and reliability, abundance of raw material, and low costs. However, as the core constituent of SSSBs, solid-state electrolytes (SSEs) with low ionic conductivities at room temperature (RT) and unstable interfaces with electrodes hinder the development of SSSBs. Recently, composite SSEs (CSSEs), which inherit the desirable properties of two phases, high RT ionic conductivity, and high interfacial stability, have emerged as viable alternatives; however, their governing mechanism remains unclear. In this review, we summarize the recent research progress of CSSEs, classified into inorganic–inorganic, polymer–polymer, and inorganic–polymer types, and discuss their structure–property relationship in detail. Moreover, the CSSE–electrode interface issues and effective strategies to promote intimate and stable interfaces are summarized. Finally, the trends in the design of CSSEs and CSSE–electrode interfaces are presented, along with the future development prospects of high-performance SSSBs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional carbonitride MXenes: From synthesis to properties and applications 二维碳氮化物 MXenes:从合成到特性和应用
IF 20.5 1区 材料科学
Carbon Energy Pub Date : 2024-09-12 DOI: 10.1002/cey2.609
Weiwei Zhang, Shibo Li, Xiachen Fan, Xuejin Zhang, Shukai Fan, Guoping Bei
{"title":"Two-dimensional carbonitride MXenes: From synthesis to properties and applications","authors":"Weiwei Zhang, Shibo Li, Xiachen Fan, Xuejin Zhang, Shukai Fan, Guoping Bei","doi":"10.1002/cey2.609","DOIUrl":"https://doi.org/10.1002/cey2.609","url":null,"abstract":"Carbonitride MXenes, such as Ti<sub>3</sub>CNT<sub><i>x</i></sub>, Ti<sub>2</sub>C<sub>0.5</sub>N<sub>0.5</sub>T<sub><i>x</i></sub>, and Ti<sub>4</sub>(C<sub>0.2</sub>N<sub>0.8</sub>)<sub>3</sub>T<sub><i>x</i></sub>, have attracted much interest in the large family of two-dimensional (2D) nanomaterials. Like their carbide MXene counterparts, the nanolayered structure and functional groups endow carbonitride MXenes with an attractive combination of physical and chemical properties. More interestingly, the replacement of C by N changes the lattice parameters and electron distribution of carbonitride MXenes due to the greater electronegativity of N as compared to C, thus resulting in significantly enhanced functional properties. This paper reviews the development of carbonitride MXenes, the preparation of 2D carbonitride MXenes, and the current understanding of the microstructure, electronic structure, and functional properties of carbonitride MXenes. In addition, applications, especially in energy storage, sensors, catalysts, electromagnetic wave shielding and absorption, fillers, and environmental and biomedical fields, are summarized. Finally, their current limitations and future opportunities are presented.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"269 1","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信