Yeping Hu, Bo Lei, Yash Girish Shah, Jose Cadena, Amar Saini, Grigorios Panagakos, Phan Nguyen
{"title":"Comparative study of machine learning techniques for post-combustion carbon capture systems.","authors":"Yeping Hu, Bo Lei, Yash Girish Shah, Jose Cadena, Amar Saini, Grigorios Panagakos, Phan Nguyen","doi":"10.3389/frai.2024.1441934","DOIUrl":"10.3389/frai.2024.1441934","url":null,"abstract":"<p><p>Computational analysis of countercurrent flows in packed absorption columns, often used in solvent-based post-combustion carbon capture systems (CCSs), is challenging. Typically, computational fluid dynamics (CFD) approaches are used to simulate the interactions between a solvent, gas, and column's packing geometry while accounting for the thermodynamics, kinetics, heat, and mass transfer effects of the absorption process. These simulations can then be used explain a column's hydrodynamic characteristics and evaluate its CO<sub>2</sub>-capture efficiency. However, these approaches are computationally expensive, making it difficult to evaluate numerous designs and operating conditions to improve efficiency at industrial scales. In this work, we comprehensively explore the application of statistical ML methods, convolutional neural networks (CNNs), and graph neural networks (GNNs) to aid and accelerate the scale-up and design optimization of solvent-based post-combustion CCSs. We apply these methods to CFD datasets of countercurrent flows in absorption columns with structured packings characterized by several geometric parameters. We train models to use these parameters, inlet velocity conditions, and other model-specific representations of the column to estimate key determinants of CO<sub>2</sub>-capture efficiency without having to simulate additional CFD datasets. We also evaluate the impact of different input types on the accuracy and generalizability of each model. We discuss the strengths and limitations of each approach to further elucidate the role of CNNs, GNNs, and other machine learning approaches for CO<sub>2</sub>-capture property prediction and design optimization.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1441934"},"PeriodicalIF":3.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SkyMap: a generative graph model for GNN benchmarking.","authors":"Axel Wassington, Raúl Higueras, Sergi Abadal","doi":"10.3389/frai.2024.1427534","DOIUrl":"10.3389/frai.2024.1427534","url":null,"abstract":"<p><p>Graph Neural Networks (GNNs) have gained considerable attention in recent years. Despite the surge in innovative GNN architecture designs, research heavily relies on the same 5-10 benchmark datasets for validation. To address this limitation, several generative graph models like ALBTER or GenCAT have emerged, aiming to fix this problem with synthetic graph datasets. However, these models often struggle to mirror the GNN performance of the original graphs. In this work, we present SkyMap, a generative model for labeled attributed graphs with a fine-grained control over graph topology and feature distribution parameters. We show that our model is able to consistently replicate the learnability of graphs on graph convolutional, attention, and isomorphism networks better (64% lower Wasserstein distance) than ALBTER and GenCAT. Further, we prove that by randomly sampling the input parameters of SkyMap, graph dataset constellations can be created that cover a large parametric space, hence making a significant stride in crafting synthetic datasets tailored for GNN evaluation and benchmarking, as we illustrate through a performance comparison between a GNN and a multilayer perceptron.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1427534"},"PeriodicalIF":3.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring how AI adoption in the workplace affects employees: a bibliometric and systematic review.","authors":"Malika Soulami, Saad Benchekroun, Asiya Galiulina","doi":"10.3389/frai.2024.1473872","DOIUrl":"10.3389/frai.2024.1473872","url":null,"abstract":"<p><strong>Introduction: </strong>The adoption of artificial intelligence (AI) in the workplace is changing the way organizations function, and profoundly affecting employees. These organizational changes raise crucial questions about the employee's future and well-being. Our study aims to explore the intersection between artificial intelligence and employee well-being through a bibliometric review and a contextual analysis.</p><p><strong>Methodology: </strong>Carried out in May 2024, our study is divided into two phases. The first phase, dedicated to bibliometric review, was conducted using the PRISMA method, and explored the Scopus and Web of Science databases for the period from 2015 to 2024. A total of 92 articles were selected for quantitative analysis using VOSviewer software. The second phase is based on an in-depth systematic analysis of 25 articles selected from those previously identified. These articles were selected on the basis of their relevance to the research question, and were subjected to in-depth thematic analysis using NVivo software.</p><p><strong>Results: </strong>The bibliometric analysis results reveal a significant increase in publications starting from the year 2020, highlighting advancements in research, primarily in the United States and China. The co-occurrence analysis identifies four main clusters: ethics, work autonomy, employee stress, and mental health, thus illustrating the dynamics created by artificial intelligence in the professional environment. Furthermore, the systematic analysis has brought to light theoretical gaps and under-explored areas, such as the need to conduct empirical studies in non-Western cultural contexts and among diverse target groups, including older adults, individuals of different sexes, people with low education levels, and participants from various sectors, including primary and secondary industries, small manufacturing businesses, call centers, as well as public and private healthcare sectors.</p><p><strong>Conclusion: </strong>Existing literature emphasize the importance for organizations to implement supportive strategies aimed at mitigating the potential adverse effects of AI on employee well-being, while also leveraging its benefits to enhance workplace autonomy and satisfaction and promote AI-enabled innovation through employee creativity and self-efficacy.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1473872"},"PeriodicalIF":3.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on deep learning methods for heart sound signal analysis.","authors":"Elaheh Partovi, Ankica Babic, Arash Gharehbaghi","doi":"10.3389/frai.2024.1434022","DOIUrl":"10.3389/frai.2024.1434022","url":null,"abstract":"<p><strong>Introduction: </strong>Application of Deep Learning (DL) methods is being increasingly appreciated by researchers from the biomedical engineering domain in which heart sound analysis is an important topic of study. Diversity in methodology, results, and complexity causes uncertainties in obtaining a realistic picture of the methodological performance from the reported methods.</p><p><strong>Methods: </strong>This survey paper provides the results of a broad retrospective study on the recent advances in heart sound analysis using DL methods. Representation of the results is performed according to both methodological and applicative taxonomies. The study method covers a wide span of related keywords using well-known search engines. Implementation of the observed methods along with the related results is pervasively represented and compared.</p><p><strong>Results and discussion: </strong>It is observed that convolutional neural networks and recurrent neural networks are the most commonly used ones for discriminating abnormal heart sounds and localization of heart sounds with 67.97% and 33.33% of the related papers, respectively. The convolutional neural network and the autoencoder network show a perfect accuracy of 100% in the case studies on the classification of abnormal from normal heart sounds. Nevertheless, this superiority against other methods with lower accuracy is not conclusive due to the inconsistency in evaluation.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1434022"},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shane Burns, Andrew Cushing, Anna Taylor, David J Lowe, Christopher Carlin
{"title":"Supporting long-term condition management: a workflow framework for the co-development and operationalization of machine learning models using electronic health record data insights.","authors":"Shane Burns, Andrew Cushing, Anna Taylor, David J Lowe, Christopher Carlin","doi":"10.3389/frai.2024.1458508","DOIUrl":"10.3389/frai.2024.1458508","url":null,"abstract":"<p><p>The prevalence of long-term conditions such as cardiovascular disease, chronic obstructive pulmonary disease (COPD), asthma, and diabetes mellitus is rising. These conditions are leading sources of premature mortality, hospital admission, and healthcare expenditure. Machine learning approaches to improve the management of these conditions have been widely explored, with data-driven insights demonstrating the potential to support earlier diagnosis, triage, and treatment selection. The translation of this research into tools used in live clinical practice has however been limited, with many projects lacking clinical involvement and planning beyond the initial model development stage. To support the move toward a more coordinated and collaborative working process from concept to investigative use in a live clinical environment, we present a multistage workflow framework for the co-development and operationalization of machine learning models which use routine clinical data derived from electronic health records. The approach outlined in this framework has been informed by our multidisciplinary team's experience of co-developing and operationalizing risk prediction models for COPD within NHS Greater Glasgow & Clyde. In this paper, we provide a detailed overview of this framework, alongside a description of the development and operationalization of two of these risk-prediction models as case studies of this approach.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1458508"},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AI assistance in enterprise UX design workflows: enhancing design brief creation for designers.","authors":"Zijian Zhu, Hyemin Lee, Younghwan Pan, Pengyu Cai","doi":"10.3389/frai.2024.1404647","DOIUrl":"10.3389/frai.2024.1404647","url":null,"abstract":"<p><p>The study explores the impact of AI tools on the daily tasks of designers in corporate environments, with a focus on the creation and evaluation processes of design briefs. Given ChatGPT's advanced natural language processing capabilities and its potential to meet the complex communication and analysis needs of design work, this tool was selected to investigate its application in designers' workflows. Through expert interviews, experimental testing, and third-party expert evaluations, we collected and analyzed data to understand the impact of AI on work processes. The findings indicate that AI tools significantly enhance both operational experience and subjective perceptions across most tasks. Additionally, the study provides a visual comparison of the testing process through a user experience map, highlighting AI's positive influence on work efficiency, information retrieval, verification, analysis, communication, and decision-making. However, challenges remain in ensuring information authenticity, protecting content copyright, and maintaining professional identity. The primary objective is to gain a comprehensive understanding of the current state of AI application in business contexts and its impact on designers' roles. By analyzing real-world feedback, the research aims to identify the strengths and weaknesses of AI solutions in enterprises and offer practical recommendations. The study underscores the importance of integrating AI thinking into workflows and adopting a human-centric approach for the future development of corporate work environments.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1404647"},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Franz Krause, Heiko Paulheim, Elmar Kiesling, Kabul Kurniawan, Maria Chiara Leva, Hector Diego Estrada-Lugo, Gernot Stübl, Nazim Kemal Üre, Javier Dominguez-Ledo, Maqbool Khan, Pedro Demolder, Hans Gaux, Bernhard Heinzl, Thomas Hoch, Jorge Martinez-Gil, Agastya Silvina, Bernhard A Moser
{"title":"Managing human-AI collaborations within Industry 5.0 scenarios via knowledge graphs: key challenges and lessons learned.","authors":"Franz Krause, Heiko Paulheim, Elmar Kiesling, Kabul Kurniawan, Maria Chiara Leva, Hector Diego Estrada-Lugo, Gernot Stübl, Nazim Kemal Üre, Javier Dominguez-Ledo, Maqbool Khan, Pedro Demolder, Hans Gaux, Bernhard Heinzl, Thomas Hoch, Jorge Martinez-Gil, Agastya Silvina, Bernhard A Moser","doi":"10.3389/frai.2024.1247712","DOIUrl":"10.3389/frai.2024.1247712","url":null,"abstract":"<p><p>In this paper, we discuss technologies and approaches based on Knowledge Graphs (KGs) that enable the management of inline human interventions in AI-assisted manufacturing processes in Industry 5.0 under potentially changing conditions in order to maintain or improve the overall system performance. Whereas KG-based systems are commonly based on a static view with their structure fixed at design time, we argue that the dynamic challenge of inline Human-AI (H-AI) collaboration in industrial settings calls for a late shaping design principle. In contrast to early shaping, which determines the system's behavior at design time in a fine granular manner, late shaping is a coarse-to-fine approach that leaves more space for fine-tuning, adaptation and integration of human intelligence at runtime. In this context we discuss approaches and lessons learned from the European manufacturing project Teaming.AI, https://www.teamingai-project.eu/, addressing general challenges like the modeling of domain expertise with particular focus on vertical knowledge integration, as well as challenges linked to an industrial KG of choice, such as its dynamic population and the late shaping of KG embeddings as the foundation of relational machine learning models which have emerged as an effective tool for exploiting graph-structured data to infer new insights.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1247712"},"PeriodicalIF":3.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elvis Ortega-Ochoa, Josep-Maria Sabaté, Marta Arguedas, Jordi Conesa, Thanasis Daradoumis, Santi Caballé
{"title":"Exploring the utilization and deficiencies of Generative Artificial Intelligence in students' cognitive and emotional needs: a systematic mini-review.","authors":"Elvis Ortega-Ochoa, Josep-Maria Sabaté, Marta Arguedas, Jordi Conesa, Thanasis Daradoumis, Santi Caballé","doi":"10.3389/frai.2024.1493566","DOIUrl":"10.3389/frai.2024.1493566","url":null,"abstract":"<p><p>Despite advances in educational technology, the specific ways in which Generative Artificial Intelligence (GAI) and Large Language Models cater to learners' nuanced cognitive and emotional needs are not fully understood. This mini-review methodically describes GAI's practical implementations and limitations in meeting these needs. It included journal and conference papers from 2019 to 2024, focusing on empirical studies that employ GAI tools in educational contexts while addressing their practical utility and ethical considerations. The selection criteria excluded non-English studies, non-empirical research, and works published before 2019. From the dataset obtained from Scopus and Web of Science as of June 18, 2024, four significant studies were reviewed. These studies involved tools like ChatGPT and emphasized their effectiveness in boosting student engagement and emotional regulation through interactive learning environments with instant feedback. Nonetheless, the review reveals substantial deficiencies in GAI's capacity to promote critical thinking and maintain response accuracy, potentially leading to learner confusion. Moreover, the ability of these tools to tailor learning experiences and offer emotional support remains limited, often not satisfying individual learner requirements. The findings from the included studies suggest limited generalizability beyond specific GAI versions, with studies being cross-sectional and involving small participant pools. Practical implications underscore the need to develop teaching strategies leveraging GAI to enhance critical thinking. There is also a need to improve the accuracy of GAI tools' responses. Lastly, deep analysis of intervention approval is needed in cases where GAI does not meet acceptable error margins to mitigate potential negative impacts on learning experiences.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1493566"},"PeriodicalIF":3.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ethics dumping in artificial intelligence.","authors":"Jean-Christophe Bélisle-Pipon, Gavin Victor","doi":"10.3389/frai.2024.1426761","DOIUrl":"10.3389/frai.2024.1426761","url":null,"abstract":"<p><p>Artificial Intelligence (AI) systems encode not just statistical models and complex algorithms designed to process and analyze data, but also significant normative baggage. This ethical dimension, derived from the underlying code and training data, shapes the recommendations given, behaviors exhibited, and perceptions had by AI. These factors influence how AI is regulated, used, misused, and impacts end-users. The multifaceted nature of AI's influence has sparked extensive discussions across disciplines like Science and Technology Studies (STS), Ethical, Legal and Social Implications (ELSI) studies, public policy analysis, and responsible innovation-underscoring the need to examine AI's ethical ramifications. While the initial wave of AI ethics focused on articulating principles and guidelines, recent scholarship increasingly emphasizes the practical implementation of ethical principles, regulatory oversight, and mitigating unforeseen negative consequences. Drawing from the concept of \"ethics dumping\" in research ethics, this paper argues that practices surrounding AI development and deployment can, unduly and in a very concerning way, offload ethical responsibilities from developers and regulators to ill-equipped users and host environments. Four key trends illustrating such ethics dumping are identified: (1) AI developers embedding ethics through coded value assumptions, (2) AI ethics guidelines promoting broad or unactionable principles disconnected from local contexts, (3) institutions implementing AI systems without evaluating ethical implications, and (4) decision-makers enacting ethical governance frameworks disconnected from practice. Mitigating AI ethics dumping requires empowering users, fostering stakeholder engagement in norm-setting, harmonizing ethical guidelines while allowing flexibility for local variation, and establishing clear accountability mechanisms across the AI ecosystem.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1426761"},"PeriodicalIF":3.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}