Frontiers in Artificial Intelligence最新文献

筛选
英文 中文
Intrinsic motivation in cognitive architecture: intellectual curiosity originated from pattern discovery. 认知结构的内在动力:源于模式发现的求知欲。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-17 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1397860
Kazuma Nagashima, Junya Morita, Yugo Takeuchi
{"title":"Intrinsic motivation in cognitive architecture: intellectual curiosity originated from pattern discovery.","authors":"Kazuma Nagashima, Junya Morita, Yugo Takeuchi","doi":"10.3389/frai.2024.1397860","DOIUrl":"10.3389/frai.2024.1397860","url":null,"abstract":"<p><p>Studies on reinforcement learning have developed the representation of curiosity, which is a type of intrinsic motivation that leads to high performance in a certain type of tasks. However, these studies have not thoroughly examined the internal cognitive mechanisms leading to this performance. In contrast to this previous framework, we propose a mechanism of intrinsic motivation focused on pattern discovery from the perspective of human cognition. This study deals with intellectual curiosity as a type of intrinsic motivation, which finds novel compressible patterns in the data. We represented the process of continuation and boredom of tasks driven by intellectual curiosity using \"pattern matching,\" \"utility,\" and \"production compilation,\" which are general functions of the adaptive control of thought-rational (ACT-R) architecture. We implemented three ACT-R models with different levels of thinking to navigate multiple mazes of different sizes in simulations, manipulating the intensity of intellectual curiosity. The results indicate that intellectual curiosity negatively affects task completion rates in models with lower levels of thinking, while positively impacting models with higher levels of thinking. In addition, comparisons with a model developed by a conventional framework of reinforcement learning (intrinsic curiosity module: ICM) indicate the advantage of representing the agent's intention toward a goal in the proposed mechanism. In summary, the reported models, developed using functions linked to a general cognitive architecture, can contribute to our understanding of intrinsic motivation within the broader context of human innovation driven by pattern discovery.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1397860"},"PeriodicalIF":3.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the efficacy of artificial intelligence for managing anxiety disorders. 人工智能管理焦虑症疗效综述。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-16 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1435895
K P Das, P Gavade
{"title":"A review on the efficacy of artificial intelligence for managing anxiety disorders.","authors":"K P Das, P Gavade","doi":"10.3389/frai.2024.1435895","DOIUrl":"10.3389/frai.2024.1435895","url":null,"abstract":"<p><p>Anxiety disorders are psychiatric conditions characterized by prolonged and generalized anxiety experienced by individuals in response to various events or situations. At present, anxiety disorders are regarded as the most widespread psychiatric disorders globally. Medication and different types of psychotherapies are employed as the primary therapeutic modalities in clinical practice for the treatment of anxiety disorders. However, combining these two approaches is known to yield more significant benefits than medication alone. Nevertheless, there is a lack of resources and a limited availability of psychotherapy options in underdeveloped areas. Psychotherapy methods encompass relaxation techniques, controlled breathing exercises, visualization exercises, controlled exposure exercises, and cognitive interventions such as challenging negative thoughts. These methods are vital in the treatment of anxiety disorders, but executing them proficiently can be demanding. Moreover, individuals with distinct anxiety disorders are prescribed medications that may cause withdrawal symptoms in some instances. Additionally, there is inadequate availability of face-to-face psychotherapy and a restricted capacity to predict and monitor the health, behavioral, and environmental aspects of individuals with anxiety disorders during the initial phases. In recent years, there has been notable progress in developing and utilizing artificial intelligence (AI) based applications and environments to improve the precision and sensitivity of diagnosing and treating various categories of anxiety disorders. As a result, this study aims to establish the efficacy of AI-enabled environments in addressing the existing challenges in managing anxiety disorders, reducing reliance on medication, and investigating the potential advantages, issues, and opportunities of integrating AI-assisted healthcare for anxiety disorders and enabling personalized therapy.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1435895"},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large language models for whole-learner support: opportunities and challenges. 用于全学习者支持的大型语言模型:机遇与挑战。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1460364
Amogh Mannekote, Adam Davies, Juan D Pinto, Shan Zhang, Daniel Olds, Noah L Schroeder, Blair Lehman, Diego Zapata-Rivera, ChengXiang Zhai
{"title":"Large language models for whole-learner support: opportunities and challenges.","authors":"Amogh Mannekote, Adam Davies, Juan D Pinto, Shan Zhang, Daniel Olds, Noah L Schroeder, Blair Lehman, Diego Zapata-Rivera, ChengXiang Zhai","doi":"10.3389/frai.2024.1460364","DOIUrl":"https://doi.org/10.3389/frai.2024.1460364","url":null,"abstract":"<p><p>In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the \"whole learner\" by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1460364"},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel framework for automated warehouse layout generation. 自动生成仓库布局的新型框架。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1465186
Atefeh Shahroudnejad, Payam Mousavi, Oleksii Perepelytsia, Sahir, David Staszak, Matthew E Taylor, Brent Bawel
{"title":"A novel framework for automated warehouse layout generation.","authors":"Atefeh Shahroudnejad, Payam Mousavi, Oleksii Perepelytsia, Sahir, David Staszak, Matthew E Taylor, Brent Bawel","doi":"10.3389/frai.2024.1465186","DOIUrl":"https://doi.org/10.3389/frai.2024.1465186","url":null,"abstract":"<p><p>Optimizing warehouse layouts is crucial due to its significant impact on efficiency and productivity. We present an AI-driven framework for automated warehouse layout generation. This framework employs constrained beam search to derive optimal layouts within given spatial parameters, adhering to all functional requirements. The feasibility of the generated layouts is verified based on criteria such as item accessibility, required minimum clearances, and aisle connectivity. A scoring function is then used to evaluate the feasible layouts considering the number of storage locations, access points, and accessibility costs. We demonstrate our method's ability to produce feasible, optimal layouts for a variety of warehouse dimensions and shapes, diverse door placements, and interconnections. This approach, currently being prepared for deployment, will enable human designers to rapidly explore and confirm options, facilitating the selection of the most appropriate layout for their use-case.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1465186"},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting air passenger traffic and market share using deep neural networks with multiple inputs and outputs. 利用具有多输入和输出的深度神经网络预测航空客运量和市场份额。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-10 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1429341
Nahid Jafari, Martin Lewison
{"title":"Forecasting air passenger traffic and market share using deep neural networks with multiple inputs and outputs.","authors":"Nahid Jafari, Martin Lewison","doi":"10.3389/frai.2024.1429341","DOIUrl":"https://doi.org/10.3389/frai.2024.1429341","url":null,"abstract":"<p><strong>Introduction: </strong>In this study, we address the challenge of accurate time series forecasting of air passenger demand using historical market demand data from the U.S. commercial aviation industry in the 21st century. Commercial aviation is a major contributor to the U.S. economy, directly or indirectly generating ~US$1.37 trillion annually, or 5% of annual GDP, and supporting more than 10 million jobs (Airlines for America, 2024). Over 1 billion passengers flew through U.S. airports in 2023 (Bureau of Transportation Statistics, 2024a). Using multiple correlated time series inputs predicts future values of multiple interrelated time series and leverages their mutual dependencies to enhance accuracy.</p><p><strong>Methods: </strong>In this study, we introduce a two-stage algorithm employing a deep neural network for correlated time series forecasting, addressing scenarios where multiple input variables are interrelated. This approach is designed to capture the influence that one time series can exert on another, thereby enhancing prediction accuracy by leveraging these interdependencies. In the first stage, we fit four Recurrent Neural Network (RNN) models to generate accurate univariate forecasts, each functioning as a single input-output model to predict aggregated market demand. The Gated Recurrent Unit (GRU) model was the top performer for our dataset overall. In the second stage, we apply the best fitted model (GRU Model) from Stage 1 to each individual competitor (disaggregated from the market) and then merge all input tensors using the Concatenate function.</p><p><strong>Results and discussion: </strong>We hope to contribute to the relevant body of knowledge with a deep neural network framework for forecasting market share among competitors in the U.S. commercial aviation industry, as no similar approach has been documented in the literature. Given the importance of the industry, there is potentially great value in applying sophisticated forecasting techniques to achieve accurate predictions of air passenger demand. Moreover, these techniques may have wider applications and can potentially be employed in other contexts.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1429341"},"PeriodicalIF":3.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting clinical trial success for Clostridium difficile infections based on preclinical data. 根据临床前数据预测艰难梭菌感染临床试验的成功率。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-09 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1487335
Fangzhou Li, Jason Youn, Christian Millsop, Ilias Tagkopoulos
{"title":"Predicting clinical trial success for <i>Clostridium difficile</i> infections based on preclinical data.","authors":"Fangzhou Li, Jason Youn, Christian Millsop, Ilias Tagkopoulos","doi":"10.3389/frai.2024.1487335","DOIUrl":"https://doi.org/10.3389/frai.2024.1487335","url":null,"abstract":"<p><p>Preclinical models are ubiquitous and essential for drug discovery, yet our understanding of how well they translate to clinical outcomes is limited. In this study, we investigate the translational success of treatments for <i>Clostridium difficile</i> infection from animal models to human patients. Our analysis shows that only 36% of the preclinical and clinical experiment pairs result in translation success. Univariate analysis shows that the sustained response endpoint is correlated with translation failure (SRC = -0.20, <i>p</i>-value = 1.53 × 10<sup>-54</sup>), and explainability analysis of multi-variate random forest models shows that both sustained response endpoint and subject age are negative predictors of translation success. We have developed a recommendation system to help plan the right preclinical study given factors such as drug dosage, bacterial dosage, and preclinical/clinical endpoint. With an accuracy of 0.76 (F1 score of 0.71) and by using only 7 features (out of 68 total), the proposed system boosts translational efficiency by 25%. The method presented can extend to any disease and can serve as a preclinical to clinical translation decision support system to accelerate drug discovery and de-risk clinical outcomes.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1487335"},"PeriodicalIF":3.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the stereotypes: Artificial Intelligence image generation and diversity in anesthesiology. 超越刻板印象:人工智能图像生成与麻醉学的多样性。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-09 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1462819
Mia Gisselbaek, Laurens Minsart, Ekin Köselerli, Mélanie Suppan, Basak Ceyda Meco, Laurence Seidel, Adelin Albert, Odmara L Barreto Chang, Sarah Saxena, Joana Berger-Estilita
{"title":"Beyond the stereotypes: Artificial Intelligence image generation and diversity in anesthesiology.","authors":"Mia Gisselbaek, Laurens Minsart, Ekin Köselerli, Mélanie Suppan, Basak Ceyda Meco, Laurence Seidel, Adelin Albert, Odmara L Barreto Chang, Sarah Saxena, Joana Berger-Estilita","doi":"10.3389/frai.2024.1462819","DOIUrl":"https://doi.org/10.3389/frai.2024.1462819","url":null,"abstract":"<p><strong>Introduction: </strong>Artificial Intelligence (AI) is increasingly being integrated into anesthesiology to enhance patient safety, improve efficiency, and streamline various aspects of practice.</p><p><strong>Objective: </strong>This study aims to evaluate whether AI-generated images accurately depict the demographic racial and ethnic diversity observed in the Anesthesia workforce and to identify inherent social biases in these images.</p><p><strong>Methods: </strong>This cross-sectional analysis was conducted from January to February 2024. Demographic data were collected from the American Society of Anesthesiologists (ASA) and the European Society of Anesthesiology and Intensive Care (ESAIC). Two AI text-to-image models, ChatGPT DALL-E 2 and Midjourney, generated images of anesthesiologists across various subspecialties. Three independent reviewers assessed and categorized each image based on sex, race/ethnicity, age, and emotional traits.</p><p><strong>Results: </strong>A total of 1,200 images were analyzed. We found significant discrepancies between AI-generated images and actual demographic data. The models predominantly portrayed anesthesiologists as White, with ChatGPT DALL-E2 at 64.2% and Midjourney at 83.0%. Moreover, male gender was highly associated with White ethnicity by ChatGPT DALL-E2 (79.1%) and with non-White ethnicity by Midjourney (87%). Age distribution also varied significantly, with younger anesthesiologists underrepresented. The analysis also revealed predominant traits such as \"masculine, \"\"attractive, \"and \"trustworthy\" across various subspecialties.</p><p><strong>Conclusion: </strong>AI models exhibited notable biases in gender, race/ethnicity, and age representation, failing to reflect the actual diversity within the anesthesiologist workforce. These biases highlight the need for more diverse training datasets and strategies to mitigate bias in AI-generated images to ensure accurate and inclusive representations in the medical field.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1462819"},"PeriodicalIF":3.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating STEM careers with AI mentors: a new IDP journey. 与人工智能导师一起领航 STEM 职业:新的 IDP 旅程。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1461137
Chi-Ning Chang, John Hui, Cammie Justus-Smith, Tzu-Wei Wang
{"title":"Navigating STEM careers with AI mentors: a new IDP journey.","authors":"Chi-Ning Chang, John Hui, Cammie Justus-Smith, Tzu-Wei Wang","doi":"10.3389/frai.2024.1461137","DOIUrl":"https://doi.org/10.3389/frai.2024.1461137","url":null,"abstract":"<p><strong>Introduction: </strong>Mentoring is crucial to the success of STEM higher education. The Individual Development Plan (IDP) is a common career development tool in STEM graduate education that facilitates structured mentor-mentee interactions and goal setting. This study examined the integration of AI mentors into the myIDP framework to provide real-time support and career insights.</p><p><strong>Methods: </strong>Using Google Gemini as an AI mentor, this study developed and assessed AI prompts within the myIDP framework. Eighteen STEM graduate students, primarily from underrepresented groups, were trained to engage with the AI mentor. Their interactions, feedback, and comments were analyzed using sentiment and thematic analysis.</p><p><strong>Results: </strong>Participants reported positive experiences with AI mentors, noting benefits, such as immediate responses, up-to-date information, access to multiple AI mentors, enhanced ownership of career development, and time savings. However, concerns about misinformation, bias, privacy, equity, and algorithmic influences have also been raised. The study identified two hybrid human-AI mentoring models-Sequential Integration and Concurrent Collaboration-that combine the unique strengths of human and AI mentors to enhance the mentoring process.</p><p><strong>Discussion: </strong>This study underscores the potential of AI mentors to enhance IDP practices by providing timely feedback and career information, thereby empowering students in their STEM career development. The proposed human-AI mentoring models show promise in supporting underrepresented minorities, potentially broadening participation in STEM fields.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1461137"},"PeriodicalIF":3.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges of using generative AI to personalize educational assessment. 使用生成式人工智能进行个性化教育评估的机遇与挑战。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-07 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1460651
Burcu Arslan, Blair Lehman, Caitlin Tenison, Jesse R Sparks, Alexis A López, Lin Gu, Diego Zapata-Rivera
{"title":"Opportunities and challenges of using generative AI to personalize educational assessment.","authors":"Burcu Arslan, Blair Lehman, Caitlin Tenison, Jesse R Sparks, Alexis A López, Lin Gu, Diego Zapata-Rivera","doi":"10.3389/frai.2024.1460651","DOIUrl":"10.3389/frai.2024.1460651","url":null,"abstract":"<p><p>In line with the positive effects of personalized learning, personalized assessments are expected to maximize learner motivation and engagement, allowing learners to show what they truly know and can do. Considering the advances in Generative Artificial Intelligence (GenAI), in this perspective article, we elaborate on the opportunities of integrating GenAI into personalized educational assessments to maximize learner engagement, performance, and access. We also draw attention to the challenges of integrating GenAI into personalized educational assessments regarding its potential risks to the assessment's core values of validity, reliability, and fairness. Finally, we discuss possible solutions and future directions.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1460651"},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of artificial intelligence in emergency and critical care diagnostics: a systematic review and meta-analysis. 人工智能在急诊和重症监护诊断中的应用:系统回顾和荟萃分析。
IF 3
Frontiers in Artificial Intelligence Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI: 10.3389/frai.2024.1422551
Jithin K Sreedharan, Fred Saleh, Abdullah Alqahtani, Ibrahim Ahmed Albalawi, Gokul Krishna Gopalakrishnan, Hadi Abdullah Alahmed, Basem Ahmed Alsultan, Dhafer Mana Alalharith, Musallam Alnasser, Ayedh Dafer Alahmari, Manjush Karthika
{"title":"Applications of artificial intelligence in emergency and critical care diagnostics: a systematic review and meta-analysis.","authors":"Jithin K Sreedharan, Fred Saleh, Abdullah Alqahtani, Ibrahim Ahmed Albalawi, Gokul Krishna Gopalakrishnan, Hadi Abdullah Alahmed, Basem Ahmed Alsultan, Dhafer Mana Alalharith, Musallam Alnasser, Ayedh Dafer Alahmari, Manjush Karthika","doi":"10.3389/frai.2024.1422551","DOIUrl":"10.3389/frai.2024.1422551","url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence has come to be the highlight in almost all fields of science. It uses various models and algorithms to detect patterns and specific findings to diagnose a disease with utmost accuracy. With the increasing need for accurate and precise diagnosis of disease, employing artificial intelligence models and concepts in healthcare setup can be beneficial.</p><p><strong>Methodology: </strong>The search engines and databases employed in this study are PubMed, ScienceDirect and Medline. Studies published between 1st January 2013 to 1st February 2023 were included in this analysis. The selected articles were screened preliminarily using the Rayyan web tool, after which investigators screened the selected articles individually. The risk of bias for the selected studies was assessed using QUADAS-2 tool specially designed to test bias among studies related to diagnostic test reviews.</p><p><strong>Results: </strong>In this review, 17 studies were included from a total of 12,173 studies. These studies were analysed for their sensitivity, accuracy, positive predictive value, specificity and negative predictive value in diagnosing barrette's neoplasia, cardiac arrest, esophageal adenocarcinoma, sepsis and gastrointestinal stromal tumors. All the studies reported heterogeneity with <i>p</i>-value <0.05 at confidence interval 95%.</p><p><strong>Conclusion: </strong>The existing evidential data suggests that artificial intelligence can be highly helpful in the field of diagnosis providing maximum precision and early detection. This helps to prevent disease progression and also helps to provide treatment at the earliest. Employing artificial intelligence in diagnosis will define the advancement of health care environment and also be beneficial in every aspect concerned with treatment to illnesses.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1422551"},"PeriodicalIF":3.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信