{"title":"使用机器学习预测残疾老年人抑郁风险:基于CHARLS数据的分析","authors":"Tongtong Jin, Ayitijiang Halili","doi":"10.3389/frai.2025.1624171","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The advancement of artificial intelligence technologies has opened new avenues for depression prevention and management in older adults with disability (defined by basic or instrumental activities of daily living, BADL/IADL). This study systematically developed machine learning (ML) models to predict depression risk in disabled elderly individuals using longitudinal data from the China Health and Retirement Longitudinal Study (CHARLS), providing a potentially generalizable tool for early screening.</p><p><strong>Methods: </strong>This study utilized longitudinal data from the CHARLS 2011-2015 cohort. A three-stage serial consensus approach feature selection framework (LASSO, Elastic Net, and Boruta) was employed to identify 21 robust predictors from 74 candidate variables. Ten ML algorithms were evaluated: LR, HistGBM, MLP, XGBoost, bagging, DT, LightGBM, RF, SVM, and CatBoost. Temporal external validation was performed using an independent 2018-2020 cohort to assess model generalizability. Performance was comprehensively evaluated using accuracy, AUC, F1-score, precision, and recall metrics. The SHAP framework was employed to interpret feature contribution mechanisms.</p><p><strong>Results: </strong>Results demonstrated that the HistGBM model achieved optimal overall performance on the testing sets (AUC = 0.779, F1-score = 0.735, accuracy = 0.713), with only an 8.5% AUC difference between training and testing sets and a 10% difference between external validation and testing sets, indicating temporal stability. SHAP interpretability analysis revealed that sleep time (mean SHAP value = 0.344) in the health behavior domain and life satisfaction (0.339) and episodic memory (0.220) in the subjective perception domain contributed more significantly to prediction than traditional biomedical indicators.</p><p><strong>Conclusion: </strong>This study developed an AI-based tool for depression risk assessment in older adults with disability through a multi-stage feature selection process and a temporal external validation framework. These findings provide a practical screening instrument and a methodological reference for implementing AI technologies in geriatric mental health applications, thereby facilitating clinical translation of predictive analytics in this field.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1624171"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the risk of depression in older adults with disability using machine learning: an analysis based on CHARLS data.\",\"authors\":\"Tongtong Jin, Ayitijiang Halili\",\"doi\":\"10.3389/frai.2025.1624171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The advancement of artificial intelligence technologies has opened new avenues for depression prevention and management in older adults with disability (defined by basic or instrumental activities of daily living, BADL/IADL). This study systematically developed machine learning (ML) models to predict depression risk in disabled elderly individuals using longitudinal data from the China Health and Retirement Longitudinal Study (CHARLS), providing a potentially generalizable tool for early screening.</p><p><strong>Methods: </strong>This study utilized longitudinal data from the CHARLS 2011-2015 cohort. A three-stage serial consensus approach feature selection framework (LASSO, Elastic Net, and Boruta) was employed to identify 21 robust predictors from 74 candidate variables. Ten ML algorithms were evaluated: LR, HistGBM, MLP, XGBoost, bagging, DT, LightGBM, RF, SVM, and CatBoost. Temporal external validation was performed using an independent 2018-2020 cohort to assess model generalizability. Performance was comprehensively evaluated using accuracy, AUC, F1-score, precision, and recall metrics. The SHAP framework was employed to interpret feature contribution mechanisms.</p><p><strong>Results: </strong>Results demonstrated that the HistGBM model achieved optimal overall performance on the testing sets (AUC = 0.779, F1-score = 0.735, accuracy = 0.713), with only an 8.5% AUC difference between training and testing sets and a 10% difference between external validation and testing sets, indicating temporal stability. SHAP interpretability analysis revealed that sleep time (mean SHAP value = 0.344) in the health behavior domain and life satisfaction (0.339) and episodic memory (0.220) in the subjective perception domain contributed more significantly to prediction than traditional biomedical indicators.</p><p><strong>Conclusion: </strong>This study developed an AI-based tool for depression risk assessment in older adults with disability through a multi-stage feature selection process and a temporal external validation framework. These findings provide a practical screening instrument and a methodological reference for implementing AI technologies in geriatric mental health applications, thereby facilitating clinical translation of predictive analytics in this field.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1624171\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1624171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1624171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting the risk of depression in older adults with disability using machine learning: an analysis based on CHARLS data.
Background: The advancement of artificial intelligence technologies has opened new avenues for depression prevention and management in older adults with disability (defined by basic or instrumental activities of daily living, BADL/IADL). This study systematically developed machine learning (ML) models to predict depression risk in disabled elderly individuals using longitudinal data from the China Health and Retirement Longitudinal Study (CHARLS), providing a potentially generalizable tool for early screening.
Methods: This study utilized longitudinal data from the CHARLS 2011-2015 cohort. A three-stage serial consensus approach feature selection framework (LASSO, Elastic Net, and Boruta) was employed to identify 21 robust predictors from 74 candidate variables. Ten ML algorithms were evaluated: LR, HistGBM, MLP, XGBoost, bagging, DT, LightGBM, RF, SVM, and CatBoost. Temporal external validation was performed using an independent 2018-2020 cohort to assess model generalizability. Performance was comprehensively evaluated using accuracy, AUC, F1-score, precision, and recall metrics. The SHAP framework was employed to interpret feature contribution mechanisms.
Results: Results demonstrated that the HistGBM model achieved optimal overall performance on the testing sets (AUC = 0.779, F1-score = 0.735, accuracy = 0.713), with only an 8.5% AUC difference between training and testing sets and a 10% difference between external validation and testing sets, indicating temporal stability. SHAP interpretability analysis revealed that sleep time (mean SHAP value = 0.344) in the health behavior domain and life satisfaction (0.339) and episodic memory (0.220) in the subjective perception domain contributed more significantly to prediction than traditional biomedical indicators.
Conclusion: This study developed an AI-based tool for depression risk assessment in older adults with disability through a multi-stage feature selection process and a temporal external validation framework. These findings provide a practical screening instrument and a methodological reference for implementing AI technologies in geriatric mental health applications, thereby facilitating clinical translation of predictive analytics in this field.