William Seward, Lixun Chi, Meysam Qadrdan, Adib Allahham, Khaled Alawasa
{"title":"Sizing, economic, and reliability analysis of photovoltaics and energy storage for an off-grid power system in Jordan","authors":"William Seward, Lixun Chi, Meysam Qadrdan, Adib Allahham, Khaled Alawasa","doi":"10.1049/esi2.12108","DOIUrl":"10.1049/esi2.12108","url":null,"abstract":"<p>Remote areas in Jordan often rely on expensive and polluting diesel generators to meet their electricity demand. This study investigates 100% renewable solutions to supply the electricity demand of off-grid energy systems through optimal sizing of photovoltaics and energy storage systems. A linear programming approach is proposed to minimise the annualised cost of electricity supply including capital costs of equipment and their operation and maintenance costs. The optimisation determines the size of photovoltaics and energy storage required to satisfy electricity demand at every hour of a selected year. A Jordan campsite was used as a case study to assess and compare the performance of PV-battery storage and PV-hydrogen storage systems from economic and reliability perspectives. The results show that hydrogen storage was more economical for a 100% renewable energy system. However, introducing some diesel generation gave the battery system a significantly lower annualised cost of energy.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"393-404"},"PeriodicalIF":2.4,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46185726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Gao, Zhenguo Shao, Feixiong Chen, Yuchao Chen, Yongqi Lin, Hongjie Deng
{"title":"Distributed robust operation strategy of multi-microgrid based on peer-to-peer multi-energy trading","authors":"Jin Gao, Zhenguo Shao, Feixiong Chen, Yuchao Chen, Yongqi Lin, Hongjie Deng","doi":"10.1049/esi2.12107","DOIUrl":"10.1049/esi2.12107","url":null,"abstract":"<p>In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer-to-peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of renewable energy and reducing energy trading costs. However, P2P multi-energy trading requires mutual agreements between two microgrids (MGs), and the uncertainties of renewable energy and load affects energy supply security. To address these issues, this article proposed a distributed robust operation strategy based on P2P multi-energy trading for multi-microgrid (MMG) systems. Firstly, a two-stage robust optimisation (TRO) method was adopted to consider the uncertainties of P2P multi-energy trading between MGs, which reduced the conservatism of robust optimisation (RO). Secondly, a TRO model for P2P multi-energy trading among MGs was established based on the Nash bargaining theory, where each MG negotiates with others based on their energy contributions in the cooperation. Additionally, a distributed algorithm was used to protect the privacy of each MG. Finally, the simulation results based on three MGs showed that the proposed approach can achieve a fair distribution of cooperative interests and effectively promote cooperation among MGs.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"376-392"},"PeriodicalIF":2.4,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45696556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoupling and dimension reduction method for distribution system security region","authors":"Jun Xiao, Yuhao Fan, Xun Jiang","doi":"10.1049/esi2.12105","DOIUrl":"https://doi.org/10.1049/esi2.12105","url":null,"abstract":"<p>The application of the security region methodology in a practical distribution system with large scale normally requires large computer memory and high computation time. To overcome this problem, this article proposes a decoupling and dimension reduction method, which can significantly accelerate the calculation of distribution system security region (DSSR) and is important for the application of the DSSR theory in large-scale distribution systems. First, the definition of DSSR dimension reflecting the size of solution space and the time complexity is proposed. And the solution algorithm for DSSR dimension is also given. Second, a decoupling and dimension reduction method suitable for the analysis of DSSR is proposed. Following the method, an incidence matrix can be obtained from the DSSR expressions, which can be further divided into multiple block matrices. According to the feeder combinations of the block matrices, the distribution system can be decoupled into multiple sub-networks for more efficient analysis. Finally, a 10kV distribution network is used in case study to validate the proposed method. The results for a time-consuming calculation, that is, TSC curve calculation, show that the proposed method can reduce the computation time significantly, making the time-consuming calculation suitable for the analysis of large-scale cases.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 3","pages":"338-354"},"PeriodicalIF":2.4,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50126253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoupling and dimension reduction method for distribution system security region","authors":"Jun Xiao, Yuhao Fan, Xun Jiang","doi":"10.1049/esi2.12105","DOIUrl":"https://doi.org/10.1049/esi2.12105","url":null,"abstract":"The application of the security region methodology in a practical distribution system with large scale normally requires large computer memory and high computation time. To overcome this problem, this article proposes a decoupling and dimension reduction method, which can significantly accelerate the calculation of distribution system security region (DSSR) and is important for the application of the DSSR theory in large ‐ scale distribution systems. First, the definition of DSSR dimension reflecting the size of so-lution space and the time complexity is proposed. And the solution algorithm for DSSR dimension is also given. Second, a decoupling and dimension reduction method suitable for the analysis of DSSR is proposed. Following the method, an incidence matrix can be obtained from the DSSR expressions, which can be further divided into multiple block matrices. According to the feeder combinations of the block matrices, the distribution system can be decoupled into multiple sub ‐ networks for more efficient analysis. Finally, a 10kV distribution network is used in case study to validate the proposed method. The results for a time ‐ consuming calculation, that is, TSC curve calculation, show that the proposed method can reduce the computation time significantly, making the time ‐ consuming calculation suitable for the analysis of large ‐ scale cases.","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57947771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-time voltage control of electric spring in islanded condition","authors":"Deepsikha Panda, Pratim Kundu, Bharat Singh Rajpurohit","doi":"10.1049/esi2.12104","DOIUrl":"10.1049/esi2.12104","url":null,"abstract":"<p>Islanded microgrid network is sensitive to voltage and frequency fluctuations which becomes more vulnerable in the presence of external disturbance and the intermittent nature of Renewable Energy Sources (RESs). The “Electric Spring” (ES) is one of the most effective and efficient solutions for enhancing operational flexibility and RESs integration. A Self-Excited Induction Generator (SEIG) based Micro hydro system with ES, non-critical and critical loads is considered. Both non-critical and critical loads are connected in 2:1 ratio in parallel with SEIG. The concept of voltage-sensitive and non-sensitive loads and the “power demand following the supply” idea have been incorporated for pointing up the contribution of ES. The non-critical load coupled with a three-phase inverter acts like an ES and can be operated as a Smart Load (SL). SL can compensate the voltage deviation between demand-supply side, therefore mitigating the voltage fluctuations. The effectiveness of ES in terms of voltage regulation at the point of standard coupling has been achieved which improved the overall voltage profile of the hybrid microgrid system which can be observed from various test cases. A hardware in loop microgrid experimental platform is established and its results highlight the excellent performance of the proposed method.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 3","pages":"307-319"},"PeriodicalIF":2.4,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49073817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trilateral control for LCL filter-based system with single grid current sensor in weak grid","authors":"Khushboo Kumari, Amit Kumar Jain","doi":"10.1049/esi2.12106","DOIUrl":"10.1049/esi2.12106","url":null,"abstract":"<p>A trilateral control for <i>LCL</i> filter-based system is introduced by the authors with a single grid current sensor in weak grid conditions. The <i>LCL</i> filter increases the complexity when the uncertain nature of the grid comes into the picture. Moreover, the traditional three-loop control technique requires three current sensors on the inverter side, three voltage sensors to sense voltage across the capacitor, and three current sensors on the grid side combined for sensing. A novel trilateral control technique utilising a single sensor is implemented to sense the grid current. This technique has reduced a considerable number of current sensors and voltage sensors. The <i>α</i> axis of grid current is proportional to sensed ‘a’ phase grid current. The <i>β</i> current in the utility grid is acquired by employing the controller reference quantities of the grid current. The computation of another variable, that is, the current in the inverter side inductor and the voltage across the capacitor, is executed by an estimation algorithm. The proposed technique provides the feature of reducing implementation financial value and weight that reduces the complexity and size of hardware. The synchronisation technique is executed by a modified dual second-order generalised integrator digital phase-locked loop for the grid-connected converter. The implemented system offers the advantage of ease of implementation, good performance, and high stability. The validity of the proposed scheme in the implemented system is demonstrated by the simulated waveform obtained on the MATLAB/Simulink platform. Finally, the effectiveness of the proposed system is further justified by the experimental waveform procured from a prototype developed in the laboratory.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"365-375"},"PeriodicalIF":2.4,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44051995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Mixed integer linear programming-based distributed energy management for networked microgrids considering network operational objectives and constraints","authors":"Guodong Liu, Maximiliano F. Ferrari, Yang Chen","doi":"10.1049/esi2.12103","DOIUrl":"10.1049/esi2.12103","url":null,"abstract":"<p>Mixed integer linear programming (MILP)–based distributed energy management for networked microgrids embedded modern distribution systems is proposed. Considering the diverse ownership of microgrids, distributed energy resources (DERs) that interface directly with utilities and responsive loads, an alternating direction method of multipliers–based distributed framework was formulated for the scheduling of networked microgrids embedded modern distribution systems by adjusting nodal price signals iteratively. In addition, to make the formulated optimization problems resolvable through more accessible and popular MILP solvers, different linearisation techniques were employed to transform the nonlinear terms into linear or mixed integer linear formats. The proposed MILP-based distributed method preserves all participants' autonomy (e.g., microgrids, DERs that interface directly with utilities and responsive loads), while incentivising them to actively participate in the distribution system operation with price signals. The proposed method is validated with results of numerical simulation using a modern distribution system consisting of multiple networked microgrids, DERs that interface directly with utilities, as well as responsive loads.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 3","pages":"320-337"},"PeriodicalIF":2.4,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43001627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Risk-return optimised energy asset allocation in transmission-distribution system using tangency portfolio and Black–Litterman model","authors":"Jisma M, Vivek Mohan, Mini Shaji Thomas","doi":"10.1049/esi2.12102","DOIUrl":"10.1049/esi2.12102","url":null,"abstract":"<p>The application of Markowitz and tangency portfolio and Black–Litterman models is extended by the authors to energy portfolio selection in transmission-distribution environments with high penetration of renewable energy. As Transmission System Operator (TSO) and Distribution System Operator (DSO) contextually take mutualistic or conflicting positions in their portfolio selection process, their risk-return interactions and behaviours depend on their subjective views on generation and operation. Here, the financial portfolio allocation tool Black–Litterman Model is adapted to incorporate subjective views of the operators to arrive at more intuitive portfolios. The best portfolios are searched within the acceptable risk-return search space of each operator defined by their Markowitz efficient frontiers (EF), for Pareto-optimising their profits. The tangency portfolio approach, which is generally used to determine the portfolio of risky and risk-free assets in finance, is used here to determine the portfolio of renewable (energy-risky) and fuel-based sources (energy-risk-free). The proposed methodology is adopted in an HV–MV interconnected test system operated by one TSO and two DSOs, having wind, solar, coal, gas and nuclear generation technologies. It is observed that completely customisable portfolios can be constructed for TSO and DSO based on their inherent financial and energy risk-return behaviours and posterior views.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 3","pages":"290-306"},"PeriodicalIF":2.4,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44130554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanting Zheng, Hao Xiao, Ziqi Liu, Wei Pei, Mohammed Beshir
{"title":"Multi-scale coordinated optimal dispatch method of electricity-thermal-hydrogen integrated energy systems","authors":"Wanting Zheng, Hao Xiao, Ziqi Liu, Wei Pei, Mohammed Beshir","doi":"10.1049/esi2.12100","DOIUrl":"10.1049/esi2.12100","url":null,"abstract":"<p>To achieve carbon neutrality, renewable energy-based power systems and hydrogen are increasingly being promoted. A novel electricity-thermal-hydrogen integrated energy system that combines new energy generation, multi-source load, and multiple energy storage is proposed by the authors. To address uncertainties in new energy output, and issues of untimely unit regulation response and large planning tracking errors, a multi-scale scheduling method based on model predictive control (MPC) was proposed. In the day-ahead dispatching stage, an optimal economic dispatching model was established with the lowest system operation cost as the optimisation objective. The model considers equipment investment, operation, maintenance, and peak-to-valley differences in electricity prices. In the intraday dispatching stage, an MPC-based intraday rolling optimisation correction strategy was proposed to cope with contact line power fluctuations caused by prediction errors of new energy and multi-source load. This strategy combines time-domain rolling and feedback correction of the real-time system state to eliminate the influence of uncertainty factors in the microgrid. The MPC-based intraday rolling optimal scheduling model was established in the form of a discrete state space and transformed into a quadratic planning problem to improve the efficiency and accuracy of the model solution. Finally, a typical microgrid was used as an example to verify the effectiveness of the proposed method. Results show that the contact line tracking error can be within 0.025 kW, and the single scheduling time was within 0.14 s.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 3","pages":"275-289"},"PeriodicalIF":2.4,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49249505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A day-ahead optimal scheduling model of an integrated energy system for a facility agricultural–industrial park","authors":"Wei Chen, Xuewu Chang, Jianing Li","doi":"10.1049/esi2.12101","DOIUrl":"10.1049/esi2.12101","url":null,"abstract":"<p>The widespread use of biogas and biomass fuels in facility agro-industrial parks has led to a significant increase in their carbon emissions. A day-ahead optimal scheduling model for an integrated energy system (IES) is proposed, that considers the coupling of biomass and power to gas (P2G) to reduce carbon emissions during the operation of an industrial park. The proposed model incorporates the two evaluation indices of the economy of and carbon emissions by the IES of the park, and formulates and solves a multi-objective optimization problem by using the ε-constraint method. From among the solutions to the Pareto front, we choose the scheduling strategy that delivers the optimal performance in case of multiple objectives by using the fuzzy decision method. Finally, the validity of the proposed model was verified by considering the IES of an agriculture–industrial park in the northwest region of China.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 3","pages":"261-274"},"PeriodicalIF":2.4,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46353428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}