基于数据驱动PV区间估计的电热一体化能源系统鲁棒优化

IF 1.6 Q4 ENERGY & FUELS
Tao Xu, Zuozheng Liu, Lingxu Guo, He Meng, Rujing Wang, Mengchao Li, Shuqi Cai
{"title":"基于数据驱动PV区间估计的电热一体化能源系统鲁棒优化","authors":"Tao Xu,&nbsp;Zuozheng Liu,&nbsp;Lingxu Guo,&nbsp;He Meng,&nbsp;Rujing Wang,&nbsp;Mengchao Li,&nbsp;Shuqi Cai","doi":"10.1049/esi2.12114","DOIUrl":null,"url":null,"abstract":"<p>Short-term interval estimation can effectively and precisely quantify the uncertainties of renewable energy, accurately represent the range of fluctuations of uncertain variables in robust optimisation of electricity-heating integrated energy system (EHIES) and it is getting crucial for reliable and flexible operation of renewable dominated new energy systems. The authors present a multivariate data-driven short-term PV power interval prediction model that consists of multiple layers, including one-dimensional convolutional layer, ultra-lightweight subspace attention mechanism (ULSAM), bidirectional long and short-term memory (BiLSTM), quantile regression (QR) and kernel density estimation (KDE). The one-dimensional convolutional layer and ULSAM can extract sequential features and highlight key information from the data; the BiLSTM processes time series data in both directions and conveys historical information; the QR and KDE models generate interval prediction with a given confidence level. Based on the proposed interval estimation, a refined PV uncertainty set can be established and adopted by robust optimal scheduling of EHIES utilising min-max-min algorithm. The simulation results have demonstrated the estimation accuracy and adaptability to various weather scenarios.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"462-476"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12114","citationCount":"0","resultStr":"{\"title\":\"Robust optimisation of electricity-heating integrated energy system based on data-driven PV interval estimation\",\"authors\":\"Tao Xu,&nbsp;Zuozheng Liu,&nbsp;Lingxu Guo,&nbsp;He Meng,&nbsp;Rujing Wang,&nbsp;Mengchao Li,&nbsp;Shuqi Cai\",\"doi\":\"10.1049/esi2.12114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Short-term interval estimation can effectively and precisely quantify the uncertainties of renewable energy, accurately represent the range of fluctuations of uncertain variables in robust optimisation of electricity-heating integrated energy system (EHIES) and it is getting crucial for reliable and flexible operation of renewable dominated new energy systems. The authors present a multivariate data-driven short-term PV power interval prediction model that consists of multiple layers, including one-dimensional convolutional layer, ultra-lightweight subspace attention mechanism (ULSAM), bidirectional long and short-term memory (BiLSTM), quantile regression (QR) and kernel density estimation (KDE). The one-dimensional convolutional layer and ULSAM can extract sequential features and highlight key information from the data; the BiLSTM processes time series data in both directions and conveys historical information; the QR and KDE models generate interval prediction with a given confidence level. Based on the proposed interval estimation, a refined PV uncertainty set can be established and adopted by robust optimal scheduling of EHIES utilising min-max-min algorithm. The simulation results have demonstrated the estimation accuracy and adaptability to various weather scenarios.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"5 4\",\"pages\":\"462-476\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12114\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

短期区间估计能够有效、准确地量化可再生能源的不确定性,准确表征电-热一体化能源系统鲁棒优化中不确定性变量的波动范围,对于可再生能源为主的新能源系统的可靠、灵活运行具有重要意义。作者提出了一个多元数据驱动的光伏短期功率区间预测模型,该模型由多层组成,包括一维卷积层、超轻量级子空间注意机制(ULSAM)、双向长短期记忆(BiLSTM)、分位数回归(QR)和核密度估计(KDE)。一维卷积层和ULSAM可以从数据中提取序列特征并突出显示关键信息;BiLSTM对时间序列数据进行双向处理,传递历史信息;QR和KDE模型生成具有给定置信水平的区间预测。基于所提出的区间估计,可以建立一个细化的PV不确定性集,并利用最小-最大-最小算法对EHIES进行鲁棒优化调度。仿真结果证明了估计的准确性和对各种天气情景的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust optimisation of electricity-heating integrated energy system based on data-driven PV interval estimation

Robust optimisation of electricity-heating integrated energy system based on data-driven PV interval estimation

Short-term interval estimation can effectively and precisely quantify the uncertainties of renewable energy, accurately represent the range of fluctuations of uncertain variables in robust optimisation of electricity-heating integrated energy system (EHIES) and it is getting crucial for reliable and flexible operation of renewable dominated new energy systems. The authors present a multivariate data-driven short-term PV power interval prediction model that consists of multiple layers, including one-dimensional convolutional layer, ultra-lightweight subspace attention mechanism (ULSAM), bidirectional long and short-term memory (BiLSTM), quantile regression (QR) and kernel density estimation (KDE). The one-dimensional convolutional layer and ULSAM can extract sequential features and highlight key information from the data; the BiLSTM processes time series data in both directions and conveys historical information; the QR and KDE models generate interval prediction with a given confidence level. Based on the proposed interval estimation, a refined PV uncertainty set can be established and adopted by robust optimal scheduling of EHIES utilising min-max-min algorithm. The simulation results have demonstrated the estimation accuracy and adaptability to various weather scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信