IntermetallicsPub Date : 2024-10-30DOI: 10.1016/j.intermet.2024.108547
Xiang Gao , Aili Tao , Mingcong Zou , Zaidong Xu
{"title":"Research on the microstructure and properties of metastable β type Ti-8V4Mo3Cr3Zr3Al alloy with high strength and toughness","authors":"Xiang Gao , Aili Tao , Mingcong Zou , Zaidong Xu","doi":"10.1016/j.intermet.2024.108547","DOIUrl":"10.1016/j.intermet.2024.108547","url":null,"abstract":"<div><div>In this paper, a new type of Ti-8V-4Mo-3Cr-3Zr-3Al metastable β-type titanium alloy is designed based on alloy design parameters such as valence electron concentration (VEC), <em>Bo</em>, and <em>Md</em>, and combines them with the empirical criterion of molybdenum equivalent fractionation. Optimize the microstructure of the alloy through processes such as cold rolling, annealing, and aging treatment to obtain good mechanical properties. The microstructure of cold rolling and post rolling heat treatment was observed and analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the tensile properties of the alloy were tested. The characteristics of the alloy in terms of microstructure and properties were summarized and analyzed. The results show that the cold formability of the alloy after solid solution treatment is good, with a cold rolling reduction of over 85 %, and a large number of deformation twins generated during the cold rolling process. The yield strength after annealing and recrystallization is up to 1160 MPa, and elongation is 18.9 %. The final performance of the aged alloy is 1510 MPa for yield strength and 5 % for elongation.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108547"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-30DOI: 10.1016/j.intermet.2024.108544
Qi Zhang , Kaihong Zheng , Juan Wang , Xianzhu Qin
{"title":"Interfacial microstructure evolution and mechanical characterization of brazed Al2O3 joints with Ni‒Ti interlayer: An experimental and theoretical approach","authors":"Qi Zhang , Kaihong Zheng , Juan Wang , Xianzhu Qin","doi":"10.1016/j.intermet.2024.108544","DOIUrl":"10.1016/j.intermet.2024.108544","url":null,"abstract":"<div><div>Reliable brazing joints of Al<sub>2</sub>O<sub>3</sub> ceramics were obtained using an active Ni‒Ti interlayer under vacuum conditions. The interfacial microstructure and mechanical properties of the joints were studied. The structural, electronic, and elastic properties of the primary interfacial reaction phases were determined using first–principles calculations. After brazing at 1320 °C for 30 min, Ni<sub>2</sub>Ti<sub>4</sub>O layer and columnar AlNi<sub>2</sub>Ti formed at the interface adjacent to the Al<sub>2</sub>O<sub>3</sub> substrate. With increasing brazing temperature between 1300 °C and 1380 °C, Ni<sub>2</sub>Ti<sub>4</sub>O layer thickened gradually, and the AlNi<sub>2</sub>Ti became increasingly longer. As brazing temperature reached 1400 °C, TiO was formed at the interface, and the Ni<sub>2</sub>Ti<sub>4</sub>O content decreased significantly; moreover, bulk AlNi<sub>2</sub>Ti and TiNi<sub>3</sub> were distributed in the brazing seam. The highest shear strength of 129 MPa was achieved when brazed at 1350 °C for 30 min. According to the first–principles calculations, Ni<sub>2</sub>Ti<sub>4</sub>O is more readily formed than AlNi<sub>2</sub>Ti, whereas AlNi<sub>2</sub>Ti exhibits greater stability than Ni<sub>2</sub>Ti<sub>4</sub>O. Both AlNi<sub>2</sub>Ti and Ni<sub>2</sub>Ti<sub>4</sub>O possess metallic bonds, contributing to the adhesion of the filler metal to the Al<sub>2</sub>O<sub>3</sub> substrates. The calculated modulus and Poisson’s ratio indicate that both AlNi<sub>2</sub>Ti and Ni<sub>2</sub>Ti<sub>4</sub>O exhibit ductile characteristics, which assist in relieving residual stress within the joint.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108544"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-30DOI: 10.1016/j.intermet.2024.108532
Jian Wang , Bin Liu , Hui Zhou , Yuankui Cao , Qianli Huang , Bingfeng Wang , Jia Li , Qihong Fang , Ao Fu , Yong Liu
{"title":"Additive manufactured oxide-dispersion strengthened FeCrNi medium entropy alloy with superior mechanical properties","authors":"Jian Wang , Bin Liu , Hui Zhou , Yuankui Cao , Qianli Huang , Bingfeng Wang , Jia Li , Qihong Fang , Ao Fu , Yong Liu","doi":"10.1016/j.intermet.2024.108532","DOIUrl":"10.1016/j.intermet.2024.108532","url":null,"abstract":"<div><div>In this work, an oxide-dispersion strengthened (ODS) FeCrNi medium entropy alloy (MEA) was prepared by low-energy ball milling and laser powder bed fusion (PBF-LB/M). The ODS FeCrNi MEA shows remarkable room-temperature tensile properties with yield strength of 878 MPa, ultimate tensile strength of 1070 MPa, and elongation of 30 %. Meanwhile, its high-temperature strength at 400 °C, 600 °C, and 700 °C exceeds many typical ODS alloys, such as PM 2000 and ODS 316. The ultra-fine cellular structures and uniformly dispersed nano-Y<sub>2</sub>O<sub>3</sub> particles in the PBF-LB/M ODS FeCrNi MEA are the main reasons for its high strength. Additionally, the FCC-matrix with a high deformation capacity and the semi-coherent interface relationship between the FCC-matrix and the nano-Y<sub>2</sub>O<sub>3</sub> particles ensure adequate plasticity.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108532"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical analysis of lamellar and Widmannstätten structures obtained in Nb-rich γ-TiAl alloy with varied cooling rate and annealing duration","authors":"Raashid Firoz , R.S.K. Gudavalli , Amlan Dutta , Chandan Mondal , Rahul Mitra","doi":"10.1016/j.intermet.2024.108529","DOIUrl":"10.1016/j.intermet.2024.108529","url":null,"abstract":"<div><div>Nb-rich γ-TiAl alloys are of interest for enhanced mechanical properties and oxidation resistance. The influence of cooling rate and annealing duration on microstructural evolution of Nb-rich γ-TiAl alloy (Ti-45Al-8Nb-0.2B) has been meticulously investigated, with emphasis on phase volume fraction, grain size, and lamellar spacing. The alloy was annealed at 1320 °C for 15 min, and then furnace-cooled, oil-quenched or cryogenic quenched, whereas annealing for 2 h and 26 h was followed by water quenching. The post-anneal microstructures were characterized using X-ray diffraction, optical and scanning electron microscopy, along with energy dispersive spectroscopy and electron backscattered diffraction. Across all samples, a fully lamellar microstructure comprising α<sub>2</sub> and γ phases has been consistently achieved, along with sporadically observed small β precipitates, and elongated ribbon-like TiB<sub>2</sub>. Widmannstätten colonies (WC) have been observed with diverse morphologies, most of which exhibited an angle of around 64° to regular lamellae, supporting the theory of <span><math><mrow><mo>{</mo><mrow><mover><mn>1</mn><mo>‾</mo></mover><mover><mn>1</mn><mo>‾</mo></mover><mn>22</mn></mrow><mo>}</mo></mrow></math></span> twinning in the α-phase for <span>WC</span> formation. The γ phase fraction has decreased with increasing cooling rate and annealing time. Grain size and lamellar spacing have also declined with cooling rate but increased with annealing time. Additionally, the mean size of equiaxed γ grains has enlarged with annealing duration.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108529"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-28DOI: 10.1016/j.intermet.2024.108536
Haoyu Zhao , Sheng Mou , Shengjie Ren , Jun Liu , Zhexu Li , Kun Bu , Binqiang Wang
{"title":"Simulation and experimental investigation of grain structure, residual stress,γ′ phases in single crystal blade","authors":"Haoyu Zhao , Sheng Mou , Shengjie Ren , Jun Liu , Zhexu Li , Kun Bu , Binqiang Wang","doi":"10.1016/j.intermet.2024.108536","DOIUrl":"10.1016/j.intermet.2024.108536","url":null,"abstract":"<div><div>Ni-based superalloy turbine blades have been required components in contemporary aero-engine. Knowing the solidification behavior, residual stress at grain defects, and microstructure of directionally solidified turbine blades is a required condition to improve the service performance of directionally solidified turbine blades. Firstly, the temperature field evolution of the blade under the withdrawal rate of 3 mm/min was studied. The deviations in temperature distribution in the high-rate solidification (HRS) procedure, particularly near the platform, can lead to transformations in the mushy zone, potentially resulting in solidification defects. Secondly, the grain growth of hollow turbine blades was calculated using the cellular automaton-finite factor method. The simulated grain framework was essentially consistent with experimental results. A method of process bar addition based on physical field distribution is also proposed. This method involves designing a combination of one Y-shaped and two I-shaped rods to decrease the cooling rate of blade edges and eliminate stray grains (SG). Then, the residual stress distribution at the locations of stray grains and low-angle grain boundaries (LAGBs) was analyzed before and after the addition of process bars. Finally, discussions were held regarding the distribution of γ′ phases in grain defects and blades.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108536"},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-28DOI: 10.1016/j.intermet.2024.108541
Zhixin Li , Shenghai Wang , Lina Hu
{"title":"Microstructure evolution in 3D-printed CoCrFeNi(AlTi)xwt% (x=0, 2.5, 5 and 7.5) high entropy alloys","authors":"Zhixin Li , Shenghai Wang , Lina Hu","doi":"10.1016/j.intermet.2024.108541","DOIUrl":"10.1016/j.intermet.2024.108541","url":null,"abstract":"<div><div>Applying 3D printing technology to high entropy alloys (HEAs) offers new potential for materials design and optimization. However, there is a lack of deep understanding of the microstructure evolution with the element addition to HEAs in 3D printing. How the element addition influences the final microstructure of materials during 3D printing still remains a puzzle. In this study, we investigated the microstructure evolution of CoCrFeNi(AlTi)<sub>xwt%</sub> (x = 0, 2.5, 5 and 7.5) HEAs fabricated by selective laser melting (SLM). We selected Al and Ti atoms as additions in the CoCrFeNi matrix based on their strong negative mixing enthalpy with Ni elements and larger atom radius than other matrix elements. It has been found that the Al and Ti addition leads to the formation of BCC and B2 precipitates, resulting in different mechanical properties. Yield strength (YS) of the HEAs exhibits a distinct increase from 512.64 MPa to 901.72 MPa at the cost of the ductility. The relationship between mechanical properties and microstructure evolution with Al and Ti additions has been elucidated. It has been found that the formation of a dislocation network in our HEAs serves as nucleation sites to benefit the precipitation. Besides, this network provides a rapid channel for atoms to diffuse during the thermal cycle of 3D printing, which also promotes the formation of precipitates. This research provides valuable insights into the modification of microstructure through SLM, contributing to the development of materials design and optimization in 3D printing.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108541"},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-25DOI: 10.1016/j.intermet.2024.108545
Jiang Li , Xuehan An , Tong Wang , E Zhu , Fuguo Li
{"title":"Thermal deformation behavior and dynamic recrystallization mechanism of GH4065A alloy considering the effect of γ′ phase","authors":"Jiang Li , Xuehan An , Tong Wang , E Zhu , Fuguo Li","doi":"10.1016/j.intermet.2024.108545","DOIUrl":"10.1016/j.intermet.2024.108545","url":null,"abstract":"<div><div>In this paper, the thermal deformation behavior of GH4065A alloy at high temperature was studied by thermal simulation compression test. The effects of deformation temperature and strain rate on microstructure evolution and dynamic recrystallization mechanism were studied by electron backscattered diffraction (EBSD) technology and transmission electron microscopy (TEM). It is proved that different deformation parameters lead to significant differences in flow behavior and dynamic recrystallization behavior. The results show that dynamic recrystallization (DRX) fraction and deformation temperature have the same variation trend. In the range of high strain rate, DRX fraction increases with the increase of strain rate. During the hot deformation process, the dynamic recrystallization mechanism of the GH4065A alloy is primarily characterized by discontinuous dynamic recrystallization (DDRX) through the nucleation form of grain boundary bulging. In the γ+γ′ two-phase region, twin-induced recrystallization (TDRX) nucleation and γ′ phase-induced recrystallization (PIDRX) nucleation phenomena are present. As the deformation temperature rises above the dissolution temperature of the γ′ phase, the effects of continuous dynamic recrystallization (CDRX) and TDRX in the deformed samples are diminished. The dissolution of the γ′ phase results in the loss of its pinning effect, while the coarsened γ′ phase significantly reduces its promoting effect on the DRX nucleation process, leading to a notable increase in grain size.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108545"},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-24DOI: 10.1016/j.intermet.2024.108539
Yulin Jiang , Jianzeng Ren , Xuanxin Jin , Zuyun Yan , Wei Tan , Zhijie Zeng , Anhui Cai , Pengwei Li , Sheng Li
{"title":"Accelerated biodegradation of Fe-30Mn-S biocomposite via preferential corrosion of secondary phase","authors":"Yulin Jiang , Jianzeng Ren , Xuanxin Jin , Zuyun Yan , Wei Tan , Zhijie Zeng , Anhui Cai , Pengwei Li , Sheng Li","doi":"10.1016/j.intermet.2024.108539","DOIUrl":"10.1016/j.intermet.2024.108539","url":null,"abstract":"<div><div>Biomedical Fe-30Mn alloy was a promising alternative for the repair of load-bearing bone defects, but its applications were largely limited by slower degradation rate than growth rate of natural bone. The accelerated corrosion mechanisms of secondary phase MnS in Fe-30Mn-S biocomposite were proposed in the study. Detailly, the MnS with a lower corrosion potential preferentially corroded and thereby increased corrosion active sites. Moreover, adsorbed S element produced by the corrosion of MnS weakened the metal-metal bond of Fe. Meanwhile, Cl<sup>−</sup> with a small ion radius easily penetrated through degradation products, which made corrosive media inside corrosion pits more aggressive. Thus, the Fe-30Mn-S biocomposite tended to vertically expand during corrosion evolution, and caused rapid corrosion with a considerably increased corrosion rate of 0.41 mm y<sup>−1</sup>. Besides, the Fe-30Mn-S biocomposite presented an ultimate compressive strength of 687 ± 22 MPa, compressive yield strength of 402 ± 23 MPa, microhardness of 280.4 ± 5.8 HV, and favorable cytocompatibility. These results indicated that Fe-30Mn-S biocomposite with accelerated corrosion effects by secondary phase could be a promising candidate for bone repair.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108539"},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time temperature transition and effect of thermocycling (D03 ↔ L12) on Fe3Ga-type alloy structure","authors":"V.V. Palacheva , A.A. Shcherbakov , V.V. Cheverikin , E.N. Zanaeva , A.M. Balagurov , I.S. Golovin","doi":"10.1016/j.intermet.2024.108528","DOIUrl":"10.1016/j.intermet.2024.108528","url":null,"abstract":"<div><div>An analysis of the first order transition kinetics between D0<sub>3</sub> and L1<sub>2</sub> phases in Fe<sub>3</sub>Ga-type alloy is carried out. Structure and magnetostriction of the samples were carefully controlled by SEM-EBSD analysis and magnetostriction tests after different heat treatments, and additionally in <em>in situ</em> regime by VSM and DSC. C-shaped curves for time-temperature-transition (TTT) diagram based on the results of the EBSD analysis of Fe-27Ga alloy are constructed in the temperature range between 400 and 550 °C. TTT diagram shows that the nucleation rate for L1<sub>2</sub> phase increases in the sequence 400 → 475 → 550 °C, while the growth rate reaches a maximum at about 500–525 °C. Effect of D0<sub>3</sub> ↔ L1<sub>2</sub> thermocycling on the kinetic of the D0<sub>3</sub> → L1<sub>2</sub> transition is studied for the first time. The amount of the L1<sub>2</sub> phase after sample re-quenching and subsequent annealing at the same annealing temperature and time, significantly increases compared with the first cycle quenching and subsequent annealing, demonstrating memory effect of previous transitions.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108528"},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntermetallicsPub Date : 2024-10-24DOI: 10.1016/j.intermet.2024.108546
Hanlin Peng , Siming Huang , Ling Hu , Ian Baker
{"title":"Dissimilar electron beam welding of the medium-entropy alloy Ni43.4Co25.3Cr25.3Al3Ti3 and 316 stainless steel for cryogenic application","authors":"Hanlin Peng , Siming Huang , Ling Hu , Ian Baker","doi":"10.1016/j.intermet.2024.108546","DOIUrl":"10.1016/j.intermet.2024.108546","url":null,"abstract":"<div><div>Large-scale superconducting magnets in ITERs have an increasing need to develop hetero-structured components, which need to join those cryogenic strong, ductile high/medium-entropy alloys (H/MEAs) to traditional austenitic stainless steels (SSs). So far, investigation on the microstructure-strength relationship of HEAs dissimilar welded joints is still lacking, and high-strength ductile joints are being pursued in the welding field. However, the intermixed composition in the fusion zone (FZ) brings great uncertainty in phase stability. In this work, we investigated the dissimilar weldability of MEA Ni<sub>43.4</sub>Co<sub>25.3</sub>Cr<sub>25.3</sub>Al<sub>3</sub>Ti<sub>3</sub> and commercial 316 SS both in 2 mm thickness using electron beam welding (EBW). A full penetration and oxidation-free joint was produced with systematic columnar grains with an average size of 200 μm, which consists of f.c.c. matrix and a few titanium carbides as verified by both thermodynamic calculations and experimental observations. However, some cavities are present due to solidification shrinkage. The weld thermal cycling recrystallizes the MEA to form heat heat-affected zone (HAZ) with grain sizes of 6 μm and commonly observed (110)<112> texture. The 316 SS and its neighboring HAZ have comparable grain sizes of 11∼13 μm and (111)<101> texture. Strong, ductile dissimilar weld joins were developed, e.g. YS of 380 MPa, UTS of 691 MPa, a uniform strain of 17.1 %, and fracture strain of 24.5 % at 298 K, and YS of 480 MPa, UTS of 929 MPa, uniform strain of 17.8 %, and fracture strain of 21.7 % at 77 K. A severe localized strain concentration occurred in the FZ associated with two neighboring HAZs, which makes failure occur in the FZ by a ductile intergranular mode. The plastic deformation is mainly governed by a planar slip of dislocations along with a few stacking faults and deformation twinning events at both temperatures. Pronounced deformation-induced planar defects not only strengthen the strain hardening rate to ductilize but also strengthen the joint.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108546"},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}