Fuel Processing Technology最新文献

筛选
英文 中文
Pilot-scale study of methane-assisted catalytic bitumen partial upgrading 甲烷辅助催化沥青部分提质试验研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-27 DOI: 10.1016/j.fuproc.2024.108138
Zhaofei Li, Ali Omidkar, Hua Song
{"title":"Pilot-scale study of methane-assisted catalytic bitumen partial upgrading","authors":"Zhaofei Li,&nbsp;Ali Omidkar,&nbsp;Hua Song","doi":"10.1016/j.fuproc.2024.108138","DOIUrl":"10.1016/j.fuproc.2024.108138","url":null,"abstract":"<div><div>The direct utilization of heavy and extra-heavy crude oils presents a formidable challenge due to their inherent physical and chemical properties such as high C/H ratio, extremely high viscosity and density, low API<sup>o</sup>, super low mobility, high asphaltene and impurity (Fe, Ni, Co, S, N, etc.) contents. To tackle these problems cost-effectively, we have proposed and established a novel technique, distinct from conventional hydrotreating, for catalytic partial upgrading of extra heavy crudes with co-fed methane and a multi-functional catalyst. This technique has been further optimized using lab-scale batch reactors (100 mL, 300 mL), bench-scale and pilot-scale fixed bed reactors with their processing capacity of 250 mL/day and 20 L/day, respectively. The feasibility, stability, and profitability of this technique have been successfully verified using all these facilities and a wide variety of feedstock. Yet, further scale-up is necessary to advance this technique towards commercialization in industry. In this study, a pilot-scale prototype unit (processing capacity of 1 barrel/day) was designed and manufactured based upon the previous achievements, and a bitumen sample recovered from the Steam Assisted Gravity Drainage (SAGD) process was chosen as a typical extra heavy crude for the upgrading. A 30-day upgrading has been conducted smoothly without clogging and a liquid yield of 96.7 % was observed with remarkable enhancements in product quality. The notable decreases in density, viscosity, TAN, asphaltene content, and sulfur content were confirmed and consistent with previous results. A low olefin content implies excellent stability and compatibility of the liquid product. Additionally, a preliminary TEA (Techno-Economic Assessment) and LCA (Life-Cycle Analysis) have been conducted and the beneficial features of this novel technique have been confirmed with higher profitability, lower cost, and lower carbon footprint. This study further consolidates the advantages of this promising technique as a cost-effective and environmentally friendly alternative to hydrotreating for processing extra heavy crudes.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108138"},"PeriodicalIF":7.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pd nanocatalyst supported on amine-functionalized mesoporous graphitic carbon nitride for formic acid hydrogen generator in the polymer electrolyte membrane fuel cell system 用于聚合物电解质膜燃料电池系统中甲酸制氢器的、支撑在胺功能介孔氮化石墨碳上的钯纳米催化剂
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-24 DOI: 10.1016/j.fuproc.2024.108133
Tae Hoon Lee , Seong Mo Yun , Min Jae Kim , Gibeom Kim , Eun Sang Jung , Taek Hyun Oh
{"title":"Pd nanocatalyst supported on amine-functionalized mesoporous graphitic carbon nitride for formic acid hydrogen generator in the polymer electrolyte membrane fuel cell system","authors":"Tae Hoon Lee ,&nbsp;Seong Mo Yun ,&nbsp;Min Jae Kim ,&nbsp;Gibeom Kim ,&nbsp;Eun Sang Jung ,&nbsp;Taek Hyun Oh","doi":"10.1016/j.fuproc.2024.108133","DOIUrl":"10.1016/j.fuproc.2024.108133","url":null,"abstract":"<div><div>Pd nanocatalyst supported on amine-functionalized mesoporous graphitic carbon nitride (Pd/NH<sub>2</sub>-mpg-C<sub>3</sub>N<sub>4</sub>) was investigated for dehydrogenation of formic acid. The catalyst was analyzed and tested to investigate the effect of amine functionalization on hydrogen generation from formic acid. Pd nanocatalyst was dispersed uniformly on NH<sub>2</sub>-mpg-C<sub>3</sub>N<sub>4</sub> without agglomeration. The turnover frequency value of Pd/NH<sub>2</sub>-mpg-C<sub>3</sub>N<sub>4</sub> was 1870 h<sup>−1</sup>, which was higher than that of Pd/mpg-C<sub>3</sub>N<sub>4</sub> because of the amine functionalization. The Pd/NH<sub>2</sub>-mpg-C<sub>3</sub>N<sub>4</sub> was also tested to investigate the effect of various reaction conditions (formic acid concentration, sodium formate concentration, and reaction temperature) on hydrogen generation from formic acid. Formic acid concentration negatively affected the catalytic activity, whereas sodium formate concentration positively affected it. Reaction temperature significantly affected the catalytic activity. The apparent activation energy of the Pd/NH<sub>2</sub>-mpg-C<sub>3</sub>N<sub>4</sub> catalyst was 60.7 kJ mol<sup>−1</sup>, and a hydrogen generator with the catalyst exhibited high conversion efficiency at an elevated temperature. Consequently, a hydrogen generator with Pd/NH<sub>2</sub>-mpg-C<sub>3</sub>N<sub>4</sub> is suitable for polymer electrolyte membrane fuel cell systems.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108133"},"PeriodicalIF":7.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024001036/pdfft?md5=43c2b4624378e152ba4b5400a83de694&pid=1-s2.0-S0378382024001036-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental investigation of the impacts of titanium dioxide (TiO2) and ethanol on performance and emission characteristics on diesel engines run with castor Biodiesel ethanol blended fuel 二氧化钛(TiO2)和乙醇对使用蓖麻生物柴油乙醇混合燃料的柴油发动机性能和排放特性影响的实验研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-21 DOI: 10.1016/j.fuproc.2024.108137
Dinku Seyoum Zeleke, Addisu Kassahun Tefera
{"title":"An experimental investigation of the impacts of titanium dioxide (TiO2) and ethanol on performance and emission characteristics on diesel engines run with castor Biodiesel ethanol blended fuel","authors":"Dinku Seyoum Zeleke,&nbsp;Addisu Kassahun Tefera","doi":"10.1016/j.fuproc.2024.108137","DOIUrl":"10.1016/j.fuproc.2024.108137","url":null,"abstract":"<div><div>Investigating the impact of ethanol and TiO2 on the performance and emission characteristics of diesel engines running on a blend of ethanol and castor biodiesel is the primary goal of this study. The nanoparticles of ethanol, biodiesel, and TiO2 diesel fuel were combined at several concentrations. Diesel, B10, B20, B30, B10E10T, B20E10T, B30E10T, B10E20T, B20E20T, and B30E20T were among the various fuels that were investigated. The physiochemical properties of all the sample fuels were assessed, including density, pour point, cloud point, fire point, flash point, and kinematic viscosity. Following this, other engine performance indicators, such as torque, power, and fuel-consumption, were examined. Studies were also carried out on the properties of emissions, including CO, CO2, HC, and NO. Peak braking power and engine torque were found for each fuel under investigation at around 2750 and 2500 rpm, respectively. The addition reduced the brake-specific fuel consumption for B10E20T by 7.41 % while increasing the braking engine's torque and power by 8.64 and 3.86 %, respectively, in compared to blends without the TiO2 additions. When compared to diesel, the exhaust emission data without the addition of TiO2 revealed a decrease in CO and HC emissions but an increase in CO2 and NO emissions. On the other hand, using ethanol blend reduced NO emissions. According to the overall findings, diesel engine performance, combustion characteristics, and exhaust gas emissions were enhanced averagely by 7.43 % when a certain ratio of ethanol, biodiesel, and TiO2 additives (B10E20 + 50 ppm) was used.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108137"},"PeriodicalIF":7.2,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024001073/pdfft?md5=6df56c01774883acd9970b90aabcacfd&pid=1-s2.0-S0378382024001073-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of NO reduction mechanism of nitrogen-impregnated biomass across wide temperature range 氮浸渍生物质在宽温度范围内的氮氧化物还原机制研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-20 DOI: 10.1016/j.fuproc.2024.108132
Jing Wang , Yingying Qu , Xinyu Jiang , Frédéric Marias , Fei Wang , Yuanyuan Zhang
{"title":"Investigation of NO reduction mechanism of nitrogen-impregnated biomass across wide temperature range","authors":"Jing Wang ,&nbsp;Yingying Qu ,&nbsp;Xinyu Jiang ,&nbsp;Frédéric Marias ,&nbsp;Fei Wang ,&nbsp;Yuanyuan Zhang","doi":"10.1016/j.fuproc.2024.108132","DOIUrl":"10.1016/j.fuproc.2024.108132","url":null,"abstract":"<div><div>Traditional denitrification methods for coal-fired power boilers face challenges like reduced flue gas temperature at low loads, decreased efficiency of existing denitrification devices, and increased ammonia consumption. Biomass, a renewable energy source, has proven effective for denitrification in medium to high-temperature ranges. To improve denitrification efficiency at low loads, this study focuses on optimizing re-burning denitrification of biomass by nitrogen-impregnated of corncob at room temperature. Investigating the effects of nitrogen impregnation and washing on biomass re-burning denitrification reactivity within 550–950 °C, the study finds that denitrification efficiency improvement is not caused only by surface-covered urea or washing. Nitrogen impregnation enhances biomass pyrolysis, releasing more CO, HCN, and NH<sub>3</sub> products, thereby enhancing NO reduction during denitrification. Additionally, nitrogen impregnation boosts nitrogen-containing functional groups such N-6 on biomass char surfaces during the re-burning process, improving denitrification efficiency. The maximum denitrification efficiency of the nitrogen impregnated sample reached 97.52 % at 950 °C, while it reached 76.51 % at 650 °C when the coated urea was washed. Furthermore, chlorine and alkali metal contents in biomass notably decrease after nitrogen-impregnation and washing, optimizing biomass combustion conditions for furnace protection. This study offers theoretical insights for promoting and applying biomass denitrification techniques.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108132"},"PeriodicalIF":7.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024001024/pdfft?md5=26dbf0d1573c202d4cbde47f6e8b0af5&pid=1-s2.0-S0378382024001024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the mechanism behind the surge in nitrogen dioxide emissions in engines transitioning from pure diesel operation to methanol/diesel dual-fuel operation 研究从纯柴油发动机过渡到甲醇/柴油双燃料发动机时二氧化氮排放量激增的机理
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-19 DOI: 10.1016/j.fuproc.2024.108131
Qiao Huang , Ruomiao Yang , Junheng Liu , Tianfang Xie , Jinlong Liu
{"title":"Investigation of the mechanism behind the surge in nitrogen dioxide emissions in engines transitioning from pure diesel operation to methanol/diesel dual-fuel operation","authors":"Qiao Huang ,&nbsp;Ruomiao Yang ,&nbsp;Junheng Liu ,&nbsp;Tianfang Xie ,&nbsp;Jinlong Liu","doi":"10.1016/j.fuproc.2024.108131","DOIUrl":"10.1016/j.fuproc.2024.108131","url":null,"abstract":"<div><div>In diesel engines, nitrogen monoxide (NO) is the predominant component of nitrogen oxides (NOx) emissions. However, when transitioning to methanol/diesel dual-fuel operation, even with a small percentage of methanol replacing diesel energy (e.g. 10 %), the concentration of nitrogen dioxide (NO<sub>2</sub>) increases significantly, becoming comparable to that of NO. This study employs multi-dimensional computational fluid dynamics (CFD) modeling to reproduce this NO<sub>2</sub>/NOx surge ratio phenomenon and investigates the underlying mechanism driving the surge in NO<sub>2</sub> emissions, an area insufficiently explored in existing literature. By comparing CFD simulations with and without the NO+HO<sub>2</sub>↔NO<sub>2</sub> + OH reaction in the chemical mechanism, the results reveal that the surge in NO<sub>2</sub> concentration disappears when this reaction is invalidated, while engine efficiency, combustion phasing, and overall NOx emissions remain largely unchanged. This indicates that the NO+HO<sub>2</sub>↔NO<sub>2</sub> + OH reaction is the primary contributor to the sudden increase in the NO<sub>2</sub>/NOx ratio. Further analysis during the main combustion stage shows that the diesel spray splits into two distinct regions after impinging on the bowl boundary, with one region deep within the bowl and the other near the squish region. During the late oxidation stage, the diffusion flame directed towards the deep bowl area remains a high-temperature zone with a high concentration of NO, whereas the flame near the squish region evolves into a low-temperature zone due to effective mixing with the low-temperature methanol/air mixture. In these low-temperature regions, almost all NO formed during the main combustion stage is converted to NO<sub>2</sub> during the late oxidation stage, leading to the observed NO<sub>2</sub>/NOx ratio surge. Methanol oxidation contributes HO<sub>2</sub> radicals, which facilitate the NO-to-NO<sub>2</sub> conversion. Consequently, the low-temperature oxidation of methanol outside the high-temperature region does not lead to thermal ignition but is instead responsible for the rare occurrence of the NO<sub>2</sub> surge.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108131"},"PeriodicalIF":7.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024001012/pdfft?md5=c3715bc5aacc519a78369d93364876b5&pid=1-s2.0-S0378382024001012-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient Co-added Ni/CeO2 catalyst for co-production of hydrogen and carbon nanotubes by methane decomposition 通过甲烷分解协同生产氢气和碳纳米管的高效共添加 Ni/CeO2 催化剂
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-13 DOI: 10.1016/j.fuproc.2024.108130
Jae-Rang Youn , Min-Jae Kim , Ki Cheol Kim , Mincheol Kim , Taesung Jung , Kang-Seok Go , Sang Goo Jeon , Woohyun Kim
{"title":"Highly efficient Co-added Ni/CeO2 catalyst for co-production of hydrogen and carbon nanotubes by methane decomposition","authors":"Jae-Rang Youn ,&nbsp;Min-Jae Kim ,&nbsp;Ki Cheol Kim ,&nbsp;Mincheol Kim ,&nbsp;Taesung Jung ,&nbsp;Kang-Seok Go ,&nbsp;Sang Goo Jeon ,&nbsp;Woohyun Kim","doi":"10.1016/j.fuproc.2024.108130","DOIUrl":"10.1016/j.fuproc.2024.108130","url":null,"abstract":"<div><p>The catalytic decomposition of methane (CDM) is a hydrogen and nanostructured carbon production process with minimal CO<sub>2</sub> emission. Among the transition metal-based catalysts (e.g. Ni, Fe, Co, etc.), Ni-based catalysts are most widely studied due to the higher catalytic activity in decomposing methane. However, the limited lifespan of the catalyst makes it unsuitable for practical applications. Effective methane decomposition catalysts should be designed to optimize both reaction efficiency and catalyst lifetime. A Ni/CeO<sub>2</sub> catalyst, developed in previous studies, Co was added to promote low-temperature (&lt; 700 °C) activity manipulating the redox property of Co. Among the prepared catalysts with varying Ni:Co ratio, the methane conversion rate of the Ni<sub>8</sub>Co<sub>2</sub>/CeO<sub>2</sub> catalyst was approximately twice that of the Ni<sub>10</sub>/CeO<sub>2</sub> catalyst, confirming its excellent low-temperature activity. The reaction rate of Ni<sub>8</sub>Co<sub>2</sub>/CeO<sub>2</sub> catalyst was 4.38 mmol/min∙g<sub>cat</sub> at 600 °C with WHSV of 36 L/g<sub>cat</sub>∙h. In terms of characteristics of carbon products, Raman spectroscopy analysis revealed that the carbon grown on the catalyst surface exhibited high crystallinity, with D-G band ratio (I<sub>D</sub>/I<sub>G</sub>) of 1.01. The fresh and used catalyst samples were characterized by TEM, XPS, XAS, and other methods to analyze the parameters affecting catalytic activity.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"263 ","pages":"Article 108130"},"PeriodicalIF":7.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024001000/pdfft?md5=00c48cd2f13854b03ac8474c92325edf&pid=1-s2.0-S0378382024001000-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simultaneous depolymerization and hydrodeoxygenation process to produce lignin-based jet fuel in continuous flow reactor 在连续流反应器中生产木质素喷气燃料的同时解聚和加氢脱氧工艺
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-02 DOI: 10.1016/j.fuproc.2024.108129
Adarsh Kumar , David C. Bell , Zhibin Yang , Joshua Heyne , Daniel M. Santosa , Huamin Wang , Peng Zuo , Chongmin Wang , Ashutosh Mittal , Darryl P. Klein , Michael J. Manto , Xiaowen Chen , Bin Yang
{"title":"A simultaneous depolymerization and hydrodeoxygenation process to produce lignin-based jet fuel in continuous flow reactor","authors":"Adarsh Kumar ,&nbsp;David C. Bell ,&nbsp;Zhibin Yang ,&nbsp;Joshua Heyne ,&nbsp;Daniel M. Santosa ,&nbsp;Huamin Wang ,&nbsp;Peng Zuo ,&nbsp;Chongmin Wang ,&nbsp;Ashutosh Mittal ,&nbsp;Darryl P. Klein ,&nbsp;Michael J. Manto ,&nbsp;Xiaowen Chen ,&nbsp;Bin Yang","doi":"10.1016/j.fuproc.2024.108129","DOIUrl":"10.1016/j.fuproc.2024.108129","url":null,"abstract":"<div><p>Economical production of lignin-based jet fuel (LJF) can improve the sustainability of sustainable aviation fuels (SAFs) as well as can reduce the overall greenhouse gas emissions. However, the challenge lies in converting technical lignin polymer from biorefinery directly to jet fuel in a continuous operation. In this work, we demonstrate a simultaneous depolymerization and hydrodeoxygenation (SDHDO) process to produce lignin-based jet fuel from the alkali corn stover lignin (ACSL) using engineered Ru-HY-60-MI catalyst in a continuous flow reactor, for the first time. The maximum carbon yield of LJF of 17.9 wt% was obtained, and it comprised of 60.2 wt% monocycloalkanes, and 21.6 wt% polycycloalkanes. Catalyst characterization of Ru-HY-60-MI suggested there was no significant change in HY zeolite structure and its crystallinity after catalyst engineering. Catalyst characterizations performed post the SDHDO experiments indicate presence of carbon and K content in the catalyst. K content presence in the spent catalyst was due to K<sup>+</sup> ion was exchanged between lignin solution and HY-60 while carbon presence validated the SDHDO chemistry on the catalyst surface. Tier α fuel property testing indicates that LJF production using SDHDO chemistry can produce SAF with high compatibility, good sealing properties, low emissions, and high energy density for aircraft.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"263 ","pages":"Article 108129"},"PeriodicalIF":7.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000997/pdfft?md5=71effa12b8694059dffbf5723e7b3e5b&pid=1-s2.0-S0378382024000997-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of asphaltene under mechanical stress of ball milling 球磨机械应力下沥青烯的晶体结构
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-08-27 DOI: 10.1016/j.fuproc.2024.108119
Fahad Al-Ajmi, Jun Li
{"title":"Crystal structure of asphaltene under mechanical stress of ball milling","authors":"Fahad Al-Ajmi,&nbsp;Jun Li","doi":"10.1016/j.fuproc.2024.108119","DOIUrl":"10.1016/j.fuproc.2024.108119","url":null,"abstract":"<div><p>This work aims to investigate the structural behaviour of asphaltene under mechanical stress using ball milling. Asphaltene samples were collected and separated from Kuwait export crude using n-heptane and subsequently ball milled for up to 24 h. X-ray diffraction was used to provide an insight into asphaltene macrostructure properties, which subsequently utilised to determine crystallite parameters. The results showed that the mechanical stress has a great influence on these structural parameters, with an increase of the aromatic sheet's inter-layer distance from 3.6 <span><math><mi>Å</mi></math></span> to 3.9 <span><math><mi>Å</mi></math></span>. While the height of stacked aromatic sheets per cluster and the number of stacked aromatic sheets per cluster decreased from 24.6 <span><math><mi>Å</mi></math></span> to 9.3 <span><math><mi>Å</mi></math></span> and 8 to 3.2, respectively. A significant increment in the aromaticity value was also observed after the ball milling experimentations, indicating mechanical stress induces cyclisation and aromatisation. The XRD profiles of the higher milling time samples reveals a high background intensity. This suggests a formation and/or increasing the proportion of highly disordered materials. In addition, the effects magnitude on asphaltene crystal parameters between the mechanical stress against heat stress was compared. The results showed core structural parameters are more sensitive to mechanical stress over heat stress.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"263 ","pages":"Article 108119"},"PeriodicalIF":7.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000894/pdfft?md5=94d3a6fad0ee2066f67e34f67271b6cc&pid=1-s2.0-S0378382024000894-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-stage pretreatment of hydrothermal liquefaction biocrude oil as a precursor for sustainable aviation fuel production 将水热液化生物原油的多级预处理作为可持续航空燃料生产的前驱体
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-08-26 DOI: 10.1016/j.fuproc.2024.108118
Sabrina Summers , Siyu Yang , Zixin Wang , Buchun Si , Harshal Kawale , Yuanhui Zhang
{"title":"Multi-stage pretreatment of hydrothermal liquefaction biocrude oil as a precursor for sustainable aviation fuel production","authors":"Sabrina Summers ,&nbsp;Siyu Yang ,&nbsp;Zixin Wang ,&nbsp;Buchun Si ,&nbsp;Harshal Kawale ,&nbsp;Yuanhui Zhang","doi":"10.1016/j.fuproc.2024.108118","DOIUrl":"10.1016/j.fuproc.2024.108118","url":null,"abstract":"<div><p>A major challenge for upgrading hydrothermal liquefaction biocrude into sustainable aviation fuel is the presence of inorganic material. Unlike commercial crude oil or biofuel from energy crops, excessive amounts of contaminants such as salt, water, and ash in biocrude oil from hydrothermal liquefaction can cause catalyst deactivation during hydroprocessing, decreased distillation efficiency, and equipment fouling from alkali deposits. Therefore, efficient removal of these impurities in HTL biocrude oil is essential. This work investigated a novel 3-stage pretreatment process, removing water, salt, and ash without chemicals, to produce a HTL biocrude oil precursor suitable for hydroprocessing. The influence of water to oil (W:O) ratio, temperature, and time on desalting efficiency was determined. After pretreatment, 81% of salt was removed, reducing total salt content to &lt;0.1%. Improvements in elemental composition and physicochemical fuel properties were observed in biocrude oils from two feedstocks, with up to 39.8% decrease in oxygen content, 55% decrease in sulfur content, 22.2% decrease in nitrogen content, 9.86% increase in higher heating value, 73.4% decrease in total acid number, 99.9% decrease in viscosity, and 17.0% decrease in density. Compared with a single-step distillation as pretreatment, 3-stage pretreatment resulted in increased salt and heteroatom removal, improved heating value, and lower acidity. The precursor quality was viable for subsequential hydrotreating and other downstream refinery processes.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"263 ","pages":"Article 108118"},"PeriodicalIF":7.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000882/pdfft?md5=d8dbf1e735667063703aa385c3e69a4a&pid=1-s2.0-S0378382024000882-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence mechanism of emulsion collector on the flotation effect of coal gasification fine slag 乳化液捕收剂对煤气化细渣浮选效果的影响机理
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-08-22 DOI: 10.1016/j.fuproc.2024.108120
Panpan Fan , Wenwen Dai , Xiaoting Fan , Lianping Dong , Jiancheng Wang , Weiren Bao , Liping Chang , Minqiang Fan
{"title":"Influence mechanism of emulsion collector on the flotation effect of coal gasification fine slag","authors":"Panpan Fan ,&nbsp;Wenwen Dai ,&nbsp;Xiaoting Fan ,&nbsp;Lianping Dong ,&nbsp;Jiancheng Wang ,&nbsp;Weiren Bao ,&nbsp;Liping Chang ,&nbsp;Minqiang Fan","doi":"10.1016/j.fuproc.2024.108120","DOIUrl":"10.1016/j.fuproc.2024.108120","url":null,"abstract":"<div><p>Coal gasification slag (CGS) presents significant challenge to the green and low-carbon development of the coal gasification industry due to its limited utilization restriction. In this study, cationic surfactant DTAB was used with kerosene to formulate an emulsion collector. The flotation results showed that, the increase in collector dosage could significantly improve the combustible recovery. At an optimal collector dosage of 10 kg/t, an increased DTAB ratio could significantly diminish the ash content of flotation concentrates and improve flotation precision. Through flotation dynamics experiments and fitting of the Fuerstenau upgrading curve, it confirmed that the entrainment of fine-grained particles with high ash content is the primary contributor to high ash content in flotation concentrates. Combined with FTIR spectroscopy, XPS and other analysis method, it validated that the surfactant effectively reduced the dispersed particle size of the agent, the increased contact angle of RC surface also improved hydrophobicity and improved particles hydrophobic agglomeration strength. Molecular dynamics simulation further illuminated that the surfactant covered part of the hydrophilic sites on the residue carbon (RC) surface and influenced the electrostatic interaction. The research results have important theoretical significance for perfecting the flotation theory of CGFS.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"263 ","pages":"Article 108120"},"PeriodicalIF":7.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000900/pdfft?md5=521bcc3280777a660ab0d05f05bd03a4&pid=1-s2.0-S0378382024000900-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信